





# MONITORING YEAR 7 ANNUAL REPORT

Final

#### AGONY ACRES MITIGATION SITE

Guilford County, NC NCDEQ Contract 004949 DMS Project Number 95716 USACE Action ID Number 2012-1909 NCDWR Project Number 2013-1305

Data Collection Period: March 2021 – November 2021 Draft Submission Date: November 30, 2021 Final Submission Date: December 28, 2021

#### PREPARED FOR:



NC Department of Environmental Quality Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652



December 28, 2021

Jeremiah Dow N.C. Division of Mitigation Services 1652 Mail Service Center Raleigh, NC 27699-1652

RE: Monitoring Year 7 Report for Agony Acres Mitigation Site (95716) Cape Fear River Basin (03030002) Guilford County, North Carolina Contract No. 004949

Dear Mr. Dow,

We have reviewed the comments on the Monitoring Year 7 Report for the above referenced project dated December 21, 2021 and have revised the report based on these comments. The revised documents are submitted with this letter. Below are responses to each of your comments. For your convenience, the comments are reprinted with our response in italics.

 Executive Summary – please update the SMUS to 6,468.733 and the 3.0 Buffer Mitigation Units (BMUs) to read 130,680 BMUs. Please make the same changes in the 5<sup>th</sup> paragraph of the project overview.

The updates have been made.

- 2. Please update Table 1 with the following changes:
  - a. Total R credit = 6,107.333
  - b. Total RE credit = 361.4
  - c. UT1 Reach 4 = 173.333
  - d. UT1A Reach 2 = 116.8
  - e. UT1A Reach 3 = 91.4

These values have been updated in Table 1.

3. Table 6 – Typically, areas of invasive treatment conducted during the monitoring year should be included in this table.

Table 6 has been updated to account for the total area of invasive vegetation treatments.

4. Please include the assessed length with the visual assessment tables.

The assessed stream length has been added Table 5a-5d.



5. Plots 10 & 11 are not replicated in the Table 7 export from the mdb when compared to Table 9 in the report. Please review the submitted data and ensure that they support the creation of the same table included in the report.

Vegetation plots 10 and 11 were located in the buffer mitigation portion of the project which closed out during 2020 (MY6). As such, these plots were not sampled during MY7 (sampling year 5 in the CVS database). We originally created Table 9 in the report by manually deleting columns pertaining to vegetation plots 10 and 11 in the exported table. We have deleted vegetation plots 10 and 11 from sampling year 5 in the CVS database and provided this copy in the electronic submittal.

If you have any questions, please contact me by phone (919) 851-9986, or by email (jlorch@wildlandseng.com).

Sincerely,

Jason Lorch, Monitoring Coordinator

**PREPARED BY:** 



Wildlands Engineering, Inc. 312 West Millbrook Road, Suite 225 Raleigh, NC 27609

> **Jason Lorch** jlorch@wildlandseng.com Phone: 919.851.9986



#### **EXECUTIVE SUMMARY**

Wildlands Engineering, Inc. (Wildlands) completed a full delivery project at the Agony Acres Mitigation Site (Site) for the North Carolina Division of Mitigation Services (DMS) to restore, enhance, and preserve a total of 9,052 linear feet (LF) of perennial and intermittent stream and restore 3.0 acres of riparian buffer in Guilford County, NC. The Site provides 6,468.733 Stream Mitigation Units (SMUs) and 130,680 Buffer Mitigation Units (BMUs). The Site is located in the Reedy Fork Watershed within Cape Fear River Basin Hydrologic Unit Code (HUC) 03030002 (Cape Fear 02) near Ossipee, NC (Figure 1). The streams are all unnamed tributaries (UT) to Reedy Fork and are referred to herein as UT1, UT1A, UT1B, and UT2. The buffer restoration component closed out in July 2020 is adjacent to Reedy Fork and lower UT1.

The Site is located within the Jordan Lake Water Supply Watershed which has been designated as a Nutrient Sensitive Water. The Site's watershed is within Cape Fear local watershed HUC 03030002020070, which was not identified as a Cape Fear 02 Targeted Local Watershed (TLW) in DMS's 2009 Cape Fear River Basin Restoration Priority (RBRP) plan; however, this local watershed was later designated as a Targeted Resource Area (TRA) in the 2011 Request for Proposals (RFP) in the Cape Fear 02. The Agony Acres Mitigation Site fully supports the Cataloging Unit (CU)-wide functional objectives stated in the 2011 RFP to reduce and control nutrient inputs, reduce and control sediment inputs, and protect and augment Significant Natural Heritage Areas in the Cape Fear 02 River Basin. The Site will contribute to meeting the CU-wide Functional Improvement Objectives by establishing the following project goals:

- Reduce sediment inputs by removing cattle from streams and restoring degraded and eroding stream channels;
- Return a network of streams to a stable form that is capable of supporting biological functions;
- Reduce fecal coliform, nitrogen, and phosphorous inputs through removing cattle from streams and establishing and augmenting a forested riparian corridor;
- Protect existing high quality streams and forested buffers; and
- Improve and protect hydrologic inputs to the adjacent Reedy Fork Aquatic Habitat Significant Natural Heritage Area.

The project is helping meet the goals for the watershed outlined in the RBRP and provides numerous ecological benefits within the Cape Fear River Basin. While many of these benefits are limited to the Agony Acres project area; others, such as pollutant removal, reduced sediment loading, and improved aquatic and terrestrial habitat, have farther-reaching effects.

Stream restoration and enhancement construction efforts were completed in September 2014. Baseline as-built monitoring activities (MYO) were completed between October and December 2014. A conservation easement is in place on 30.74 acres of stream and riparian corridors to protect them in perpetuity.

Monitoring Year 7 (MY7) assessment and site visits were completed between March and November 2021 to assess the conditions of the project. Overall, the Site has met the required vegetation, stream, and hydrology success criteria for MY7. The overall stem density for the Site in MY7 is 465 stems per acre, which is greater than the terminal success criterion of 210 stems per acre. Invasive vegetation was treated along UT1 reaches 1-5 and UT2, but some scattered stems and minor populations occur in the remaining project area. All restored and enhanced streams are stable and functioning as designed and have recorded multiple bankfull events. The perched culvert, isolated bank erosion, and log sills identified as stream areas of concern in MY6 have been repaired or stabilized. Beavers inhabited a portion of UT1 Reach 5 for a short time before they were removed. This beaver activity was minor and

did not result in long term damage. Both stream gages on UT1B recorded persistent steam flow and met the hydrologic criteria for MY7 (Appendix 5).



### AGONY ACRES MITIGATION SITE

Monitoring Year 7 Annual Report

#### TABLE OF CONTENTS

| Section 1: | PROJECT OVERVIEW                  | 1 |
|------------|-----------------------------------|---|
| 1.1 F      | Project Goals and Objectives      | 2 |
|            | Nonitoring Year 7 Data Assessment |   |
| 1.2.1      | Vegetative Assessment             |   |
| 1.2.2      | Vegetation Areas of Concern       | 4 |
| 1.2.3      | Stream Assessment                 |   |
| 1.2.4      | Stream Areas of Concern           | 4 |
| 1.2.5      | Hydrology Assessment              | 5 |
| 1.2.6      | Maintenance Plan                  | 5 |
| 1.3 N      | Monitoring Year 7 Summary         | 5 |
|            | METHODOLOGY                       |   |
|            | REFERENCES                        |   |

#### **APPENDICES**

| Appendix 1        | General Tables and Figures                                                |
|-------------------|---------------------------------------------------------------------------|
| Figure 1          | Project Vicinity Map                                                      |
| Figure 2          | Project Component/ Asset Map                                              |
| Table 1           | Project Components and Mitigation Credits                                 |
| Table 2           | Project Activity and Reporting History                                    |
| Table 3           | Project Contact Table                                                     |
| Table 4           | Project Information and Attributes                                        |
| Appendix 2        | Visual Assessment Data                                                    |
| Figures 3.0 - 3.2 | Integrated Current Condition Plan View                                    |
| Tables 5a-d       | Visual Stream Morphology Stability Assessment Table                       |
| Table 6           | Vegetation Condition Assessment Table                                     |
|                   | Stream Photographs                                                        |
|                   | Repaired Stream Areas of Concern Photographs                              |
|                   | Vegetation Photographs                                                    |
| Appendix 3        | Vegetation Plot Data                                                      |
| Table 7           | Vegetation Plot Criteria Attainment                                       |
| Table 7a          | Vegetation Plot Criteria Attainment: Average Height by Plot               |
| Table 8           | CVS Vegetation Plot Metadata                                              |
| Table 9           | Planted and Total Stem Counts                                             |
| Appendix 4        | Morphological Summary Data and Plots                                      |
| Tables 10a-d      | Baseline Stream Data Summary                                              |
| Table 11          | Morphology and Hydraulic Summary (Dimensional Parameters – Cross Section) |
| Tables 12a-f      | Monitoring Data – Stream Reach Data Summary                               |
|                   | Cross Section Plots                                                       |
|                   | Reachwide and Cross Section Pebble Count Plots                            |
| Appendix 5        | Hydrology Summary Data and Plots                                          |
| Table 13          | Verification of Bankfull Events                                           |
|                   | Monthly Summarized Rainfall Data                                          |
| Table 14          | In-Stream Flow Gauge Attainment Summary                                   |
|                   | Recorded In-Stream Flow Events                                            |

# Section 1: PROJECT OVERVIEW

The Agony Acres Mitigation Site (Site) is located in northeastern Guilford County, north of Gibsonville (Figure 1). From Gibsonville take NC 61 north 5.5 miles. Turn right on Sockwell Road and travel 1.4 miles. The project site is located north of Sockwell Road and is bound on the north by Reedy Fork. The Site is located in the Carolina Slate Belt of the Piedmont Physiographic Province. The project watershed is classified as approximately 65% managed herbaceous cover, 30% mixed upland hardwoods, 3% cultivated, 2% southern yellow pine, and the remaining 1% is low intensity development. The drainage area for the Agony Acres Mitigation Site is 358 acres.

The Site is located in the Reedy Fork Watershed within the Jordan Lake Water Supply Watershed which has been designated a Nutrient Sensitive Water. The project streams flow directly into Reedy Fork which flows into the Haw River and eventually into the Jordan Lake Reservoir. The Site's watershed is within Hydrologic Unit Code (HUC) 03030002020070 which was not identified as a Cape Fear 02 Targeted Local Watershed (TLW) in DMS's 2009 Cape Fear River Basin Restoration Priority (RBRP) plan; however, this HUC was later designated as a Targeted Resource Area (TRA) in the 2011 Request for Proposals (RFP) in the Cape Fear 02. The Site connects to Reedy Fork and three separate but connected Significant Natural Heritage areas. Reedy Fork Aquatic Habitat, Reedy Fork Slopes at NC 61, and Altamahaw Alluvial Forest are all listed on the NC Natural Heritage GIS database and are immediately adjacent to the Site. There are also records for several state threatened, special concern, and significantly rare mussel species in Reedy Fork.

North Carolina Division of Mitigation Services (DMS) completed a Local Watershed Plan (LWP) in 2008 on the HUC immediately downstream which begins at the confluence of Reedy Fork and the Haw River and includes Travis and Tickle Creeks. The Site is located less than one mile outside of the LWP area and has a very similar land use pattern. The 2008 Little Alamance, Travis, and Tickle Creeks LWP identified nutrient inputs from agriculture and stream bank erosion in altered reaches as major stressors within this TLW. The Site was identified as a stream and buffer restoration and cattle exclusion opportunity to improve water quality and buffers within the TRA.

The Site consists of four tributaries to Reedy Fork which are located within the North Carolina Division of Water Resources (NCDWR) subbasin 03-06-02 of the Cape Fear River Basin. The project stream reaches include UT1, UT1A, UT1B, and UT2.

Mitigation work within the Site included restoration, enhancement, and preservation of 9,052 linear feet (LF) of perennial and intermittent stream channel and 3.0 acres (ac) of riparian buffer restoration. The Site provides 6,468.733 Stream Mitigation Units (SMUs) and 180,680 Buffer Mitigation Units (BMUs). The stream areas were also planted with native vegetation to improve habitat and protect water quality.

The final mitigation plan was submitted and accepted by the DMS in March 2014. Construction activities were completed by Land Mechanic Designs, Inc. in September 2014. The planting was completed by Bruton Natural Systems, Inc. in December 2014. The baseline as-built survey was completed by Kee Mapping and Surveying, in October 2014. Annual monitoring will be conducted for seven years with the close-out anticipated to occur in 2022 given the success criteria are met. The buffer riparian buffer restoration component of the Site closed out in July 2020. Appendix 1 provides more detailed project activity, history, contact information, directions, and watershed/site background information for this project.

### 1.1 Project Goals and Objectives

Prior to construction activities, the stream channels exhibited varying degrees of degradation across the Site. The Site was used as agricultural and pasture land and most of the buffers had been reduced to narrow corridors. Cattle had free access to the streams, which resulted in sporadic degraded stream banks and poor bed forms.

The restored stream channels on the Site were previously incised and overwidened in many locations, likely as a result of historic channelization. The alterations of the Site to promote cattle grazing and farming resulted in elimination of many of the ecological functions of this small stream complex. Specifically, functional losses at the Site included degraded aquatic habitat, altered hydrology (related to loss of floodplain connection and lowered water table), and a reduction of the quality and quantity of riparian wetland habitats and related water quality benefits. Ongoing bank erosion was also occurring at some locations due to high, overly steep banks, and lack of bank vegetation. Table 4 in Appendix 1 and Tables 10a-d in Appendix 4 present the pre-restoration conditions in detail.

The mitigation project is intended to provide numerous ecological benefits within the Cape Fear River Basin. While many of these benefits are limited to the Agony Acres Mitigation Site project area; others, such as pollutant removal and improved aquatic and terrestrial habitat, have more far-reaching effects. Expected improvements to water quality and ecological processes are outlined below as project goals and objectives. These project goals were established and completed with careful consideration of goals and objectives that were described in the RBRP and to meet DMS's mitigation needs while maximizing the ecological and water quality uplift within the watershed.

The following project specific goals established in the Agony Acres Mitigation Plan (Wildlands, 2014) include:

- Reduce sediment inputs by removing cattle from streams and restoring degraded and eroding stream channels;
- Return a network of streams to a stable form that is capable of supporting biological functions important to sensitive species within and adjacent to the project site;
- Reduce fecal coliform, nitrogen, and phosphorous inputs through removing cattle from streams and establishing and augmenting a forested riparian corridor;
- Protect existing high quality streams and forested buffers that provide habitat important to sensitive species within and adjacent to the project site;
- Improve and protect hydrologic inputs to the adjacent Reedy Fork Aquatic Habitat Significant Natural Heritage Area; and
- Improve and protect hydrologic inputs to Reedy Fork, which is listed as impaired on the 2012 NC 303(d) list for impaired aquatic life and for elevated fecal coliform levels.

The project goals will be addressed through the following project objectives:

- On-site nutrient inputs were decreased by removing cattle from streams, re-establishing floodplain connectivity, and filtering on-site runoff through buffer zones. Off-site nutrient input will be absorbed on-site by filtering flood flows through restored floodplain areas, where flood flow will spread through native vegetation. Vegetation is expected to uptake excess nutrients.
- Stream bank erosion which contributes sediment load to the creeks was greatly reduced, if not eliminated, in the project area. Eroding stream banks were stabilized using bioengineering, natural channel design techniques, and grading to reduce bank angles and bank height. Storm flow containing grit and fine sediment is filtered through restored floodplain areas, where flow will spread through native vegetation. Spreading flood flows also reduces velocity and allows

sediment to settle out. Sediment transport capacity of restored reaches was improved so that capacity balances more closely to load. Sediment load reduction will be monitored through assessing bank stability with cross section surveys and visual assessment through photo documentation which serves as an accepted surrogate for direct turbidity measurements.

- Restored riffle/pool sequences promote aeration of water and create deep water zones, helping to lower water temperature. Establishment and maintenance of riparian buffers creates long-term shading of the channel flow to minimize thermal heating. Lower water temperatures will help maintain dissolved oxygen concentrations.
- In-stream structures were constructed to improve habitat diversity and trap detritus. Wood habitat structures were included in the stream as part of the restoration design. Such structures include log drops and rock structures that incorporate woody debris and native onsite rock.
- Adjacent buffer and riparian habitats were restored with native vegetation as part of the project. Native vegetation provides cover and food for terrestrial creatures. Native plant species were planted and invasive species treated. Eroding and unstable areas were stabilized with vegetation as part of this project.
- The restored land is protected in perpetuity through a conservation easement.

The design streams were restored to the appropriate form based on the surrounding landscape, climate, and natural vegetation communities but also with strong consideration to existing watershed conditions and trajectory. Specifically, the site design was developed to restore a small stream complex directly adjacent to Reedy Fork. Other key factors addressed in the design were to create stable habitats, improve riparian buffers, and restore the natural migration patterns for fish spawning. Figure 2 and Table 1 in Appendix 1 present the stream mitigation components for the Agony Acres Mitigation Site.

## 1.2 Monitoring Year 7 Data Assessment

Annual monitoring and quarterly site visits were conducted during MY7 to assess the condition of the project. The stream and buffer success criteria for the Site follow the approved success criteria presented in the Agony Acres Mitigation Plan (Wildlands, 2014).

### 1.2.1 Vegetative Assessment

Planted woody vegetation was monitored in accordance with the guidelines and procedures developed by the Carolina Vegetation Survey-DMS Level 2 Protocol (Lee et al., 2006). A total of 16 10 meter by 10 meter vegetation plots were established during the baseline monitoring within the project easement areas. Two of these plots (VP 10 and VP 11) were located in the closed-out buffer restoration component so only 14 plots were monitored during MY7. The final vegetative success criteria for the stream restoration and enhancement areas will be the survival of 210 planted stems per acre in the riparian corridor at the end of the required monitoring period (MY7). Planted vegetation must average 10 feet in height in each plot at the end of the seventh year of monitoring.

The MY7 vegetation survey was completed in August 2021. The 2021 vegetation monitoring resulted in a site-wide average stem density of 465 planted stems per acre, which is greater than the final requirement of 210 planted stems per acre. Each of the 14 plots monitored individually exceeded the MY7 stem density criterion. The riparian buffer is thriving and planted stems have achieved excellent height growth. Each of the 14 vegetation plots have an average tree height exceeding 10 feet (Table 7a). Interspersion of mature late successional trees throughout the project easement in conjunction with planted stems provide a diverse, multi-stratum forest that fulfills multiple wildlife habitat requirements. Refer to Appendix 2 for vegetation plot photographs and the vegetation condition assessment table and Appendix 3 for vegetation data tables.

Numerous mature trees have been present along lower UT1A and UT1 prior to construction. NCIRT requested some form of reporting on mature tree mortality that has occurred since construction. A rudimentary survey was conducted during MY7 which counted surviving and dead or fallen trees in the floodplain and lower portion of the side slope where construction disturbance appeared possible. Live and dead trees that were clearly separated from the floodplain or construction disturbance footprint were ignored. Fifty-five trees were included in this inventory; 32 were surviving and 21 were dead. Detailed investigation of cause of mortality was not conducted. The following discussion is simply our observations and speculation. Of the 21 dead trees, 9 occurred on the lower portion of the side slope, but in a high enough position that increased water elevation was an unlikely cause of mortality. Construction equipment disturbance may have been a contributing factor. The remaining 12 dead trees occurred on the floodplain where increased water table elevation may have been a stressor, but undiscernible from the effects of construction equipment disturbance. Increased water table elevation and construction equipment disturbance may have acted as cumulative stressors which resulted in mature tree mortality. It should be noted that considerable deadfall is present along UT1A Reach 3, a preservation reach that was completely undisturbed. These trees presumably died of some cause unrelated to the stream restoration project. No data was collected on percentage of dead trees in this area, although the concentration of dead trees appears somewhat higher along restored stream reaches.

### 1.2.2 Vegetation Areas of Concern

Identifiable populations of Chinese privet (*Ligustrum sinense*), Japanese honeysuckle (*Lonicera japonica*), and multiflora rose (*Rosa multiflora*) were treated along UT1 Reaches 1-5 and UT2 totaling 1.97 acres, 2.0 acres, and 1.21 acres, respectively (Figure 3.1-3.2). Scattered invasive stems were also treated along UT1 Reaches 1-5 and UT2. A total of 0.57 acres of Japanese honeysuckle occurs along UT1A Reach 1 and UT1 Reach 5 which was not treated during MY7 (Figure 3.2).

#### 1.2.3 Stream Assessment

Morphological surveys for MY7 were conducted in April 2021. All streams within the Site are stable with little to no erosion and have met the success criteria for MY7. While there have been some minor post-construction adjustments within the restored channels; the cross sections show little to no change in the bankfull area, maximum depth, or width-to-depth ratio. Surveyed riffle cross sections fell within the parameters defined for channels of the appropriate Rosgen stream type. Pebble counts indicated coarser materials in the riffle features and finer particles in the pool features.

Visual assessment indicated streams are laterally and vertically stable throughout the project. Refer to Appendix 2 for the visual stability assessment table, CCPV Maps, and reference photographs. Refer to Appendix 4 for the morphological data and plots.

### 1.2.4 Stream Areas of Concern

Beaver activity occurred on UT1 where it approaches the Reedy Fork floodplain (Figure 3.2). Beaver activity was identified in September and removal of three beavers and two dams was completed in early November. Beavers also attempted to inhabit this area during the fall of MY4, MY5, and MY6. Despite temporary damming of the stream and severance of numerous black willow stems during these years, the stream and vegetation community has proven resilient to short-term beaver inhabitance. Stream banks remained stable and no changes to stream geomorphology have been detected through visual observation or cross section surveys (Appendix 4). Primarily black willow trees were affected which appear to have maintained healthy below-ground root mass. Severed black willow stems resprouted vigorously each spring and achieved five to six feet of height growth by the following fall. Photo point 10 is located in the area which has been most substantially impacted by beaver activity over the past four

fall seasons (Appendix 2). The MY7 beaver activity was minor and few planted stems were affected. Only two small dams were built and the crests of the dams were below bankfull elevation.

During MY6, a perched culvert on UT1A, log sills on UT2, and a small, isolated occurrence of bank erosion on lower UT1 were identified as needing improvement. The perched culvert was repaired by installing a log sill with a boulder immediately downstream of the log to lessen the water surface drop and make it resemble a naturally occurring feature. The log sills downstream of the crossing on UT2 were replaced using a small excavator and have remained stable. The small machine was able to navigate between rows of trees and disturbance to soil and vegetation was minimal. The UT2 log sills above the crossing that were reported as piping in MY6 have been partially hand repaired. Some stream flow has been restored over the top of these two sills but a portion of the flow is still piping around or underneath. This minor piping does not appear to present risk of failure, bank erosion, or channel instability. The area of isolated bank erosion in lower UT1 was live-staked during the 2020-2021 dormant season and seeded. The resulting vegetative stabilization appears to have improved the condition and stability of this bank. Photographs of these repairs are included in Appendix 2.

### 1.2.5 Hydrology Assessment

Two bankfull flow events within separate years must be documented on the restoration and enhancement reaches within the seven-year monitoring period. In addition, the presence of baseflow must be documented along portions of UT1B constructed with a Priority I restoration approach. Baseflow must be present for at least some portion of the year (most likely in the winter/early spring) during years with normal rainfall conditions. While there is no stream flow criteria established in the mitigation plan for UT1A, gages were added during the fall of 2018 (MY4) after observation that the lower portion of the channel had limited flow during late summer and early fall.

Multiple bankfull events were recorded on all streams at the Site during MY7 (Table 13). Bankfull Events on all streams have been recorded during previous monitoring years; therefore, the Site has met the bankfull stream hydrology criterion for the duration of the monitoring period.

The downstream flow gage in UT1B recorded flow above the thalweg elevation throughout MY7 with the exception of few, scattered two to eight hour periods during July, August, and September. The upstream flow gage in UT1B recorded baseflow throughout the entire observed duration of MY7 (Appendix 5). UT1B has met the baseflow criterion for MY1 through MY7. Each flow gauge in UT1A showed the same general trend. The stream flowed persistently from the beginning of the year until June, after which it flowed sporadically through the remainder of the MY7 data observation period. In previous years, more persistent stream flow resumed in September. August through November of 2021 had exceptionally low rainfall which is probably the reason for limited stream flow during the fall. The reason for less persistent stream flow in UT1A relative to other project streams is believed to be a result of different soils and geology. It is not apparent that flow loss is related to any aspect of the restoration design. Appendix 5 contains hydrologic data.

### 1.2.6 Maintenance Plan

The entire site will continue to be monitored and treated for invasive species until project closeout.

### 1.3 Monitoring Year 7 Summary

Vegetation, stream, and hydrology criteria were met for MY7. Each of the 14 vegetation plots attained the final success criterion of 210 planted stems per acre with an average heigh exceeding 10 feet. The diverse riparian buffer is progressing into a mature forest. Invasive vegetation was treated although some scattered stems and small populations remain. All streams at the Site are stable and functioning as designed. Minor beaver activity occurred and beavers were removed, but no long term damage to the

site occurred. UT1B attained the baseflow criterion and multiple bankfull events were recorded on all streams during MY7. The project has successfully restored aquatic and terrestrial ecosystems and created numerous functional improvements relative to the pre-restoration condition.



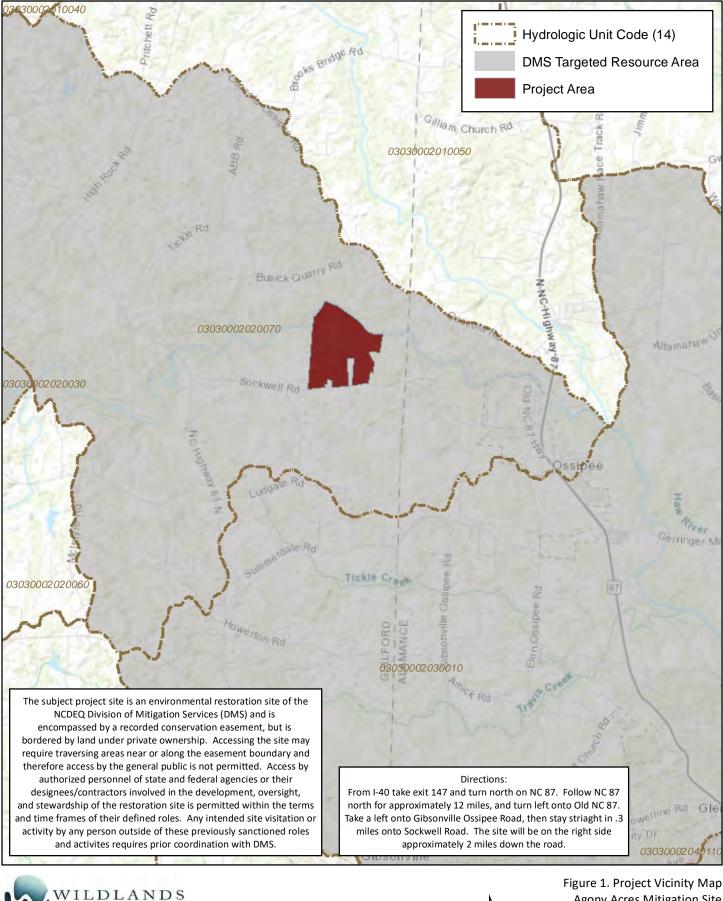
#### Section 2: **METHODOLOGY**

Geomorphic data was collected following the standards outlined in The Stream Channel Reference Site: An Illustrated Guide to Field Techniques (Harrelson et al., 1994) and in the Stream Restoration: A Natural Channel Design Handbook (Doll et al., 2003). Crest gages were installed in surveyed riffle cross sections and monitored quarterly. Hydrology attainment installation and monitoring methods are in accordance with the USACE (USACE, 2003) standards. Vegetation monitoring protocols followed the Carolina Vegetation Survey-DMS Level 2 Protocol (Lee et al., 2006). Reporting follows the DMS Monitoring Report Template and Guidance Version 1.3 (DMS, 2010).

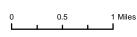
### Section 3: REFERENCES

- Doll, B.A., Grabow, G.L., Hall, K.A., Halley, J., Harman, W.A., Jennings, G.D., and Wise, D.E. 2003. Stream Restoration A Natural Channel Design Handbook.
- Drostin, M. and Herrmann, M. 2009. Cape Fear River Basin Restoration Priorities 2009. North Carolina Ecosystem Enhancement Program.https://files.nc.gov/ncdeq/Mitigation%20Services/Watershed\_Planning/Cape\_Fear\_River\_Ba sin/RBRP%20CapeFear%202009%20Revised%20032013.pdf
- Harrelson, C. C; Rawlins, C.L.; Potyondy, J. P. 1994. Stream Channel Reference Sites: An Illustrated Guide to Field Technique. Gen. Tech. Rep. RM-245. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 61 p.
- Lee, M.T., Peet, R.K., S.D., Wentworth, T.R. 2008. CVS-EEP Protocol for Recording Vegetation Version 4.2. Retrieved from http://cvs.bio.unc.edu/protocol/cvs-eep-protocol-v4.2-lev1-5.pdf.
- Multi-Resolution Land Characteristics Consortium (MRLC). 2001. National Land Cover Database. http://www.mrlc.gov/nlcd.php
- North Carolina Division of Water Resources (NCDWR). 2011. Surface Water Classifications. http://portal.ncdeq.org/web/wq/ps/csu/classifications

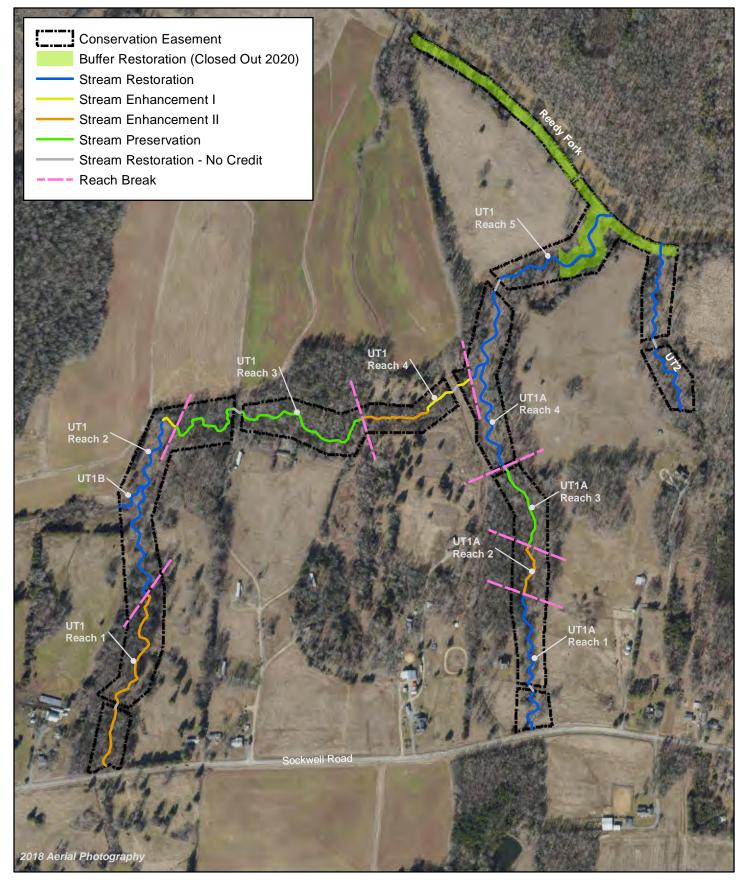
Rosgen, D. L. 1994. A classification of natural rivers. Catena 22:169-199.


- Rosgen, D.L. 1996. Applied River Morphology. Pagosa Springs, CO: Wildland Hydrology Books.
- Stober, C. and Selikoff, K. 2008. Little Alamance, Travis, & Tickle Creek Watersheds Report & Project Atlas: An Ecosystem Enhancement Program Funded Local Watershed Plan Phase III. Piedmont Triad Council of Governments.

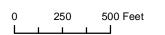
https://files.nc.gov/ncdeq/Mitigation%20Services/Watershed\_Planning/Cape\_Fear\_River\_Basin/Little Alamance\_Travis\_Tickle/LATT\_FinalWatershedPlan.pdf


- United States Army Corps of Engineers. 2003. Stream Mitigation Guidelines. USACE, NCDENR-DWQ, USEPA, NCWRC.
- United States Geological Survey (USGS), 1998. North Carolina Geology. http://www.geology.enr.state.nc.us/usgs/carolina.htm

Wildlands Engineering, Inc (2014). Agony Acres Mitigation Site Mitigation Plan. DMS, Raleigh, NC.


APPENDIX 1. General Tables and Figures




WILDLANDS



igure 1. Project Vicinity Map Agony Acres Mitigation Site DMS Project No. 95716 Monitoring Year 7 - 2021







Ń

Figure 2. Project Component/Asset Map Agony Acres Mitigation Site DMS Project No. 95716 Monitoring Year 7 - 2021

#### Table 1. Project Components and Mitigation Credits

Agony Acres Mitigation Site (DMS Project No.95716)

Monitoring Year 7 - 2021

|            |                          |                                       |                                 | MITIGA    | TION CREDI                  | TS                         |                             |                                |                     |                         |  |  |
|------------|--------------------------|---------------------------------------|---------------------------------|-----------|-----------------------------|----------------------------|-----------------------------|--------------------------------|---------------------|-------------------------|--|--|
|            | St                       | tream                                 | Riparian \                      |           | Non-Ripari                  | an Wetland                 | Buffer                      | Nitrogen<br>Nutrient<br>Offset | Phosphorous         | Nutrient Offse          |  |  |
| pe<br>tals | R<br>6,107.333**         | RE<br>361.4                           | R<br>N/A                        | RE<br>N/A | R<br>N/A                    | RE<br>N/A                  | 130,680                     | N/A                            | P                   | N/A                     |  |  |
| tais       | 0,107.555                | 501.4                                 | NA                              |           | · · ·                       | · · ·                      | 130,000                     | N/A                            |                     | ,,,,                    |  |  |
|            |                          |                                       |                                 | PROJECT   |                             | 115                        |                             |                                |                     |                         |  |  |
| R          | each ID                  | As-Built<br>Stationing/<br>Location   | Existing<br>Footage/<br>Acreage | Approach  |                             | or Restoration<br>valent   |                             | n Footage/<br>eage             | Mitigation<br>Ratio | Credits (SMU<br>WMU/BMU |  |  |
|            |                          |                                       |                                 |           | STREAMS                     |                            |                             |                                |                     |                         |  |  |
|            | l-Reach 1<br>DT ROW)     | 100+00 to 100+14                      | 40**                            | EII       |                             | cement<br>credit)          | 40                          | **                             |                     |                         |  |  |
| UT1        | L-Reach 1                | 100+14 to 103+62;<br>103+93 to 111+24 | 1,053**                         | EII       | Enhan                       | cement                     | 1,05                        | 53**                           | 2.5                 | 421.2**                 |  |  |
|            | L-Reach 1<br>ment Break) | 103+62 to 103+93                      | 31                              | EII       |                             | cement<br>credit)          | 3                           | 1                              |                     |                         |  |  |
|            | L-Reach 2                | 111+24 to 122+38                      | 1,039                           | P1        | -                           | ration                     | 1,1                         | 14                             | 1                   | 1,114                   |  |  |
| UT1        | L-Reach 2                | 122+38 to 123+31                      | 93                              | EI        | Enhan                       | cement                     | 9                           | 3                              | 1.5                 | 62                      |  |  |
| UT1        | L-Reach 3                | 123+31 to 128+50;<br>129+06 to 137+37 | 1,350                           |           | Presei                      | Preservation               |                             | 350                            | 5                   | 270                     |  |  |
|            | L-Reach 3<br>nent Break) | 128+50 to 129+06                      | 56                              |           | Preservation<br>(No Credit) |                            | Preservation<br>(No Credit) |                                | 56                  |                         |  |  |
| UT1        | L-Reach 4                | 137+37 to 140+92                      | 355                             | EII       | Enhan                       | cement                     | 355                         |                                | 2.5                 | 142                     |  |  |
| UT1        | L-Reach 4                | 140+92 to 142+66;<br>143+20 to 144+06 | 260                             | EI        | Enhan                       | Enhancement                |                             | 260                            |                     | 173.333                 |  |  |
|            | L-Reach 4<br>ment Break) | 142+66 to 143+20                      | 54                              | EI        |                             | Enhancement<br>(No Credit) |                             | 4                              |                     |                         |  |  |
| UT1        | L-Reach 5                | 144+06 to 149+65;<br>150+20 to 158+94 | 1,355                           | P1/2      | Resto                       | Restoration                |                             | 133                            | 1                   | 1,433                   |  |  |
|            | L-Reach 5<br>nent Break) | 149+65 to 150+20                      | 65                              | P1        | Resto<br>(No C              | ration<br>Tredit)          | 5                           | 5                              |                     |                         |  |  |
|            | A-Reach 1<br>DT ROW)     | 200+00 to 200+05                      | 5                               | P1        | Restoration<br>(No Credit)  |                            | 5                           |                                |                     |                         |  |  |
| UT1        | A-Reach 1                | 200+05 to 202+64;<br>203+04 to 208+49 | 738                             | P1        | Resto                       | ration                     | 80                          | )4                             | 1                   | 804                     |  |  |
|            | A-Reach 1<br>nent Break) | 202+64 to 203+04                      | 32                              | P1        |                             | ration<br>redit)           | 4                           | 0                              |                     |                         |  |  |
| UT1        | A-Reach 2                | 208+49 to 211+41                      | 292                             | EII       | Enhan                       | cement                     | 29                          | 92                             | 2.5                 | 116.8                   |  |  |
| -          | A-Reach 3                | 211+41 to 215+98                      | 457                             |           |                             | vation                     | 45                          | 57                             | 5                   | 91.4                    |  |  |
| (Easer     | A-Reach 3<br>ment Break) | 215+98 to 216+28                      | 30                              | EII       | (No C                       | cement<br>credit)          | _                           | 0                              |                     |                         |  |  |
|            | A-Reach 4                | 216+28 to 222+78                      | 461                             | P1        |                             | ration                     |                             | 50                             | 1                   | 650                     |  |  |
|            | UT1B                     | 300+00 to 302+19                      | 243                             | P1        | Resto                       | ration                     | 2:                          | 19                             | 1                   | 219                     |  |  |
|            | UT2                      | 400+00 to 404+16;<br>404+67 to 410+23 | 975                             | P1        | Resto                       | ration                     | 97                          | 72                             | 1                   | 972                     |  |  |
| (Easer     | UT2<br>nent Break)       | 404+16 to 404+67                      | 53                              | P1/2      |                             | ration<br>redit)           | 5                           | 1                              |                     |                         |  |  |
| Riparia    | n Buffer Area            |                                       |                                 |           | Resto                       | ration                     | 3.0 (130                    | ,680 ft <sup>2</sup> )         | 1                   | 130,680                 |  |  |
|            |                          |                                       | СОМРО                           | ONENT SU  | MMATION                     |                            |                             |                                |                     |                         |  |  |
| Restor     | ration Level             | Stream (                              | LF)                             |           | in Wetland<br>acres)        | Non-Riparia<br>(acr        |                             | Buffer<br>(acres)              | Upland<br>(acres)   |                         |  |  |
|            |                          |                                       |                                 | Riverine  | Non-Riverine                |                            |                             |                                |                     | t                       |  |  |

| Restoration Level         | Stream (LF) | (acres)  |              | (acres) | (acres) | (acres) |
|---------------------------|-------------|----------|--------------|---------|---------|---------|
|                           |             | Riverine | Non-Riverine |         |         | -       |
| Restoration               | 5,192       | -        | -            | -       | 3.0     | -       |
| Enhancement               |             | -        | -            | -       | -       | -       |
| Enhancement I             | 353         |          |              |         |         |         |
| Enhancement II            | 1,700**     |          |              |         |         |         |
| Creation                  |             | -        | -            | -       |         |         |
| Preservation              | 1,807       | -        | -            | -       |         | -       |
| High Quality Preservation | -           | -        | -            | -       |         | -       |

N/A: not applicable \* Credit calculations were originally calculated along the as-built thalweg and updated to be calculated along stream centerlines as stated in the approved Mitigation Plan for Monitoring Year 3 after discusions with NC IRT.

\*\*Values updated during MY4 to account for DOT culvert replacement project.

# Table 2. Project Activity and Reporting History Agony Acres Mitigation Site (DMS Project No.95716) Monitoring Year 7 - 2021

| Activity or Report                              |                                    | Date Collection<br>Complete  | Completion or Scheduled<br>Delivery |
|-------------------------------------------------|------------------------------------|------------------------------|-------------------------------------|
| Mitigation Plan                                 |                                    | October 2013-<br>March 2014  | March 2014                          |
| Final Design - Construction Plans               |                                    | April 2014-<br>June 2014     | June 2014                           |
| Construction                                    |                                    | June 2014-<br>September 2014 | September 2014                      |
| Temporary S&E mix applied to entire project a   | area <sup>1</sup>                  | September 2014               | September 2014                      |
| Permanent seed mix applied to reach/segmer      | nts                                | September 2014               | September 2014                      |
| Bare root and live stake plantings for reach/se | egments                            | December 2014                | December 2014                       |
| Baseline Monitoring Document (Year 0)           | Stream Survey                      | October 2014                 | February 2015                       |
| Baseline Montoring Document (real 0)            | Vegetation Survey                  | December 2014                | February 2015                       |
| Year 1 Monitoring                               | Stream Survey                      | May 2015                     | December 2015                       |
|                                                 | Vegetation Survey                  | September 2015               | December 2015                       |
| Year 2 Monitoring                               | Stream Survey                      | March 2016                   | December 2016                       |
|                                                 | Vegetation Survey                  | June 2016                    | December 2010                       |
| Supplemental Planting                           |                                    |                              | December 2016                       |
| Year 3 Monitoring                               | Stream Survey                      | April 2017                   | December 2017                       |
|                                                 | Vegetation Survey                  | August 2017                  | December 2017                       |
| Invasive Vegetation Treatment                   |                                    |                              | September-October 2018              |
| Year 4 Monitoring                               | Stream Survey                      | N/A                          | December 2018                       |
|                                                 | Vegetation Survey                  | N/A                          | December 2018                       |
| Invasive Vegetation Treatment                   |                                    |                              | June 2019                           |
| Invasive Vegetation Treatment                   |                                    |                              | October 2019                        |
| Beaver Removal                                  |                                    |                              | October 2019                        |
| Year 5 Monitoring                               | Stream Survey                      | March 2019                   | December 2019                       |
|                                                 | Vegetation Survey                  | August 2019                  | Detember 2015                       |
| Buffer Project Closeout                         |                                    |                              | July 2020                           |
| Beaver Removal                                  |                                    |                              | August 2020                         |
| Invasive Vegetation Treatment                   |                                    |                              | October 2020                        |
| Year 6 Monitoring                               | Stream Survey                      | N/A                          | December 2020                       |
|                                                 | Vegetation Survey                  | N/A                          | December 2020                       |
| Invasive Vegetation Treatment                   |                                    |                              | March-April 2021                    |
| Year 7 Monitoring                               | Stream Survey<br>Vegetation Survey | April 2021<br>August 2021    | December 2021                       |
| Stream Repairs                                  | , ,                                |                              | July 2021                           |
| Beaver Removal                                  |                                    |                              | October-November 2021               |
| Invasive Vegetation Treatment                   |                                    |                              | November 2021                       |

<sup>1</sup>Seed and mulch is added as each section of construction is completed.

 Table 3. Project Contact Table

 Agony Acres Mitigation Site (DMS Project No.95716)

 Monitoring Year 7 - 2021

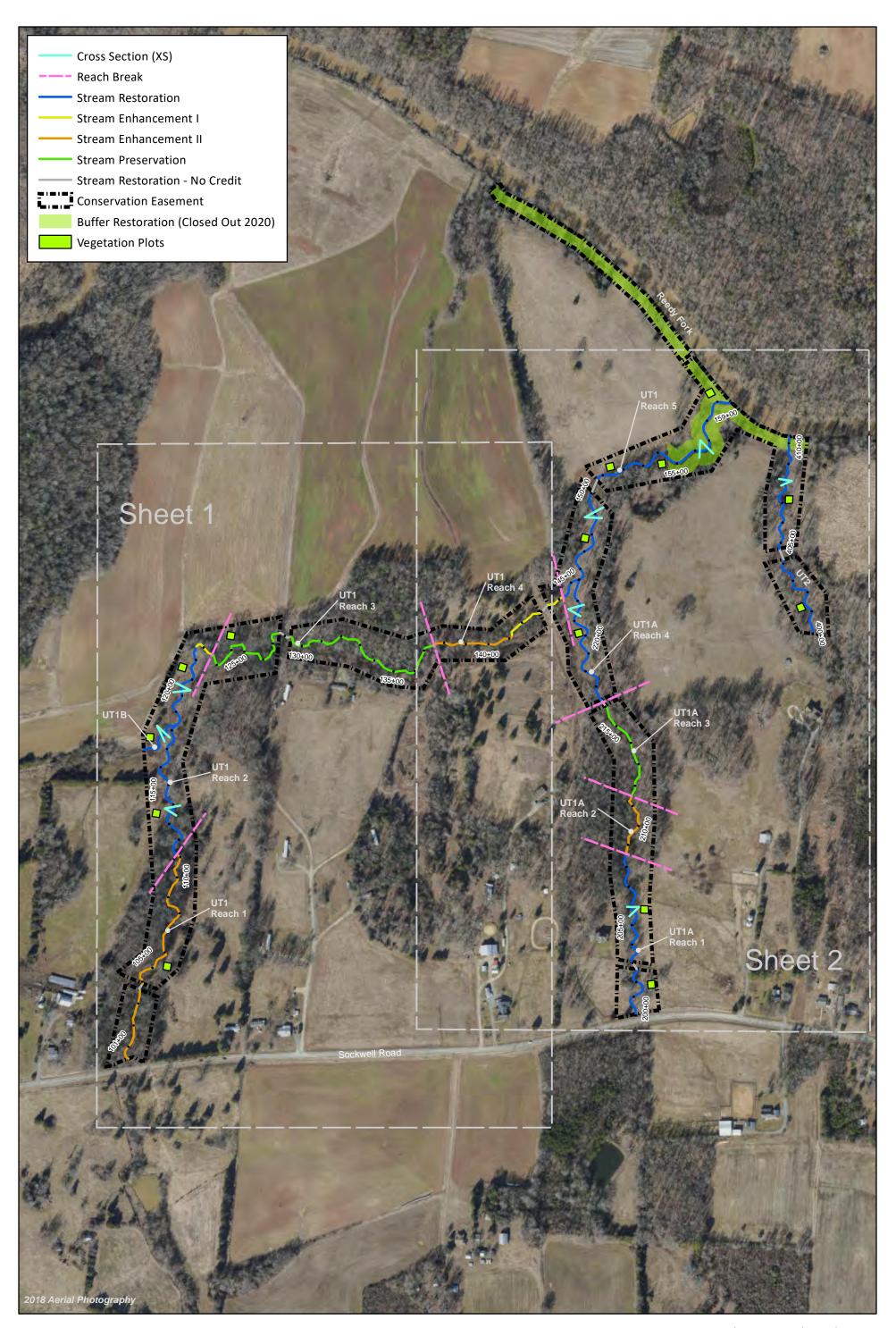
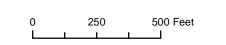

|                          | Wildlands Engineering, Inc.        |
|--------------------------|------------------------------------|
| Designer                 | 312 West Millbrook Road, Suite 225 |
| Nicole Macaluso, PE, CFM | Raleigh, NC 27609                  |
|                          | 919.851.9986                       |
|                          | Land Mechanic Designs, Inc.        |
| Construction Contractor  | 126 Circle G Lane                  |
|                          | Willow Spring, NC 27592            |
|                          | Bruton Natural Systems, Inc        |
| Planting Contractor      | P.O. Box 1197                      |
|                          | Fremont, NC 27830                  |
|                          | Land Mechanic Designs, Inc.        |
| Seeding Contractor       | 126 Circle G Lane                  |
|                          | Willow Spring, NC 27592            |
| Seed Mix Sources         | Green Resource, LLC                |
| Nursery Stock Suppliers  |                                    |
| Bare Roots               | Dykes and Son Nursery              |
| Live Stakes              | - , ,                              |
| Monitoring Performers    | Wildlands Engineering, Inc.        |
| Monitoring, POC          | Jason Lorch                        |
| -                        | 919.851.9986, ext. 107             |

Table 4. Project Information and Attributes


Agony Acres Mitigation Site (DMS Project No.95716) Monitoring Year 7 - 2021

|                                                                          | PROJECT               | INFORMATION                                     |                                                                                                                                                                                                                                |                       |                |            |  |
|--------------------------------------------------------------------------|-----------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------|------------|--|
| Project Name                                                             | Agony Acres Mitigat   | ion Site                                        |                                                                                                                                                                                                                                |                       |                |            |  |
| County                                                                   | Guilford County       |                                                 |                                                                                                                                                                                                                                |                       |                |            |  |
| Project Area                                                             | 30.74 acres           |                                                 |                                                                                                                                                                                                                                |                       |                |            |  |
| Planted Area                                                             | 18.4 acres            |                                                 |                                                                                                                                                                                                                                |                       |                |            |  |
| Project Coordinates (latitude and longitude)                             | 36° 10′ 40″ N, 79° 33 | 3′ 02″ W                                        |                                                                                                                                                                                                                                |                       |                |            |  |
|                                                                          | ECT WATERSHED         |                                                 | ORMATION                                                                                                                                                                                                                       |                       |                |            |  |
| Physiographic Province                                                   | Piedmont              |                                                 |                                                                                                                                                                                                                                |                       |                |            |  |
| River Basin                                                              | Cape Fear River       |                                                 |                                                                                                                                                                                                                                |                       |                |            |  |
| USGS Hydrologic Unit 8-digit                                             | 03030002              |                                                 |                                                                                                                                                                                                                                |                       |                |            |  |
| USGS Hydrologic Unit 14-digit                                            | 03030002020070        |                                                 |                                                                                                                                                                                                                                |                       |                |            |  |
| DWR Sub-basin                                                            | 03-06-02              |                                                 |                                                                                                                                                                                                                                |                       |                |            |  |
| Project Drainiage Area (acres)                                           | 358 acres             |                                                 |                                                                                                                                                                                                                                |                       |                |            |  |
|                                                                          |                       |                                                 |                                                                                                                                                                                                                                |                       |                |            |  |
| Project Drainage Area Percentage of Impervious Area                      | <1%                   |                                                 |                                                                                                                                                                                                                                |                       |                |            |  |
| CGIA Land Use Classification                                             | -                     | aceous Cover, 30% N<br>v Pine, <1% Low Inter    | 1ixed Upland Hardwoo<br>nsity Development                                                                                                                                                                                      | ods, 3% Cultivated,   |                |            |  |
|                                                                          | REACH SUMM            | ARY INFORMAT                                    | ION                                                                                                                                                                                                                            |                       |                |            |  |
| Parameters                                                               | UT1 - Reaches 1 -3    | UT1 - Reaches 4 & 5                             | UT1A                                                                                                                                                                                                                           | UT1B                  | U              | T2         |  |
| Length of reach (linear feet) - Post-Restoration                         | 3,711                 | 2,157                                           | 2,278                                                                                                                                                                                                                          | 219                   | 219 1,023      |            |  |
| Drainage area (acres)                                                    | 228                   | 358                                             | 103                                                                                                                                                                                                                            | 61 61                 |                |            |  |
| NCDWR stream identification score                                        | 42.5                  | 46.5                                            | 41                                                                                                                                                                                                                             | 29.25 32.25           |                |            |  |
| NCDWR Water Quality Classification                                       |                       |                                                 | WS-V                                                                                                                                                                                                                           |                       |                | -          |  |
| Morphological Desription (stream type)                                   | Р                     | Р                                               | P/I                                                                                                                                                                                                                            | Р                     |                | <b>b</b>   |  |
|                                                                          |                       |                                                 |                                                                                                                                                                                                                                |                       |                |            |  |
| Evolutionary trend (Simon's Model) - Pre- Restoration                    | 1, 111                | III, IV                                         | I, II/III II/III II/III                                                                                                                                                                                                        |                       |                |            |  |
| Underlying mapped soils                                                  |                       | garee loam, Coronaca c<br>ay loam, Wehadkee loa | lay loam, Enon fine sanc<br>m                                                                                                                                                                                                  | dy loam, Enon clay lo | am, Madison o  | lay loam,  |  |
| Drainage class                                                           |                       |                                                 |                                                                                                                                                                                                                                |                       |                |            |  |
| Soil Hydric status                                                       |                       |                                                 |                                                                                                                                                                                                                                |                       |                |            |  |
| Slope                                                                    |                       |                                                 |                                                                                                                                                                                                                                |                       |                |            |  |
| FEMA classification                                                      |                       |                                                 | N/A                                                                                                                                                                                                                            |                       |                |            |  |
| Native vegetation community                                              |                       | Pie                                             | ,<br>dmont bottomland fo                                                                                                                                                                                                       | rest                  |                |            |  |
| Percent composition exotic invasive vegetation -Post-                    |                       |                                                 | 0%                                                                                                                                                                                                                             |                       |                |            |  |
| Restoration                                                              | REGULATORY            | CONSIDERATIO                                    | NS                                                                                                                                                                                                                             |                       |                |            |  |
| Pogulation                                                               |                       |                                                 | -                                                                                                                                                                                                                              | porting Decumen       | tation         |            |  |
| Regulation                                                               | Applicable?           | Resolved?                                       | -                                                                                                                                                                                                                              | porting Documen       |                | 0          |  |
| Waters of the United States - Section 404                                | Yes                   | Yes                                             | USACE Nationwide P                                                                                                                                                                                                             |                       | WQ 401 Wat     | er Quality |  |
| Waters of the United States - Section 401                                | Yes                   | Yes                                             | Certification No. 388                                                                                                                                                                                                          | 5.                    |                |            |  |
| Division of Land Quality (Dam Safety)                                    | No                    | N/A                                             | N/A                                                                                                                                                                                                                            |                       |                |            |  |
| Endangered Species Act                                                   | Yes                   | Yes                                             | Agony Acres Mitigati<br>effect" on Guilford C                                                                                                                                                                                  |                       |                |            |  |
| Historic Preservation Act                                                | Yes                   | Yes                                             | No historic resource:<br>SHPO dated 1/15/13                                                                                                                                                                                    |                       | e impacted (le | etter from |  |
| Coastal Zone Management Act (CZMA)/Coastal Area<br>Management Act (CAMA) | No                    | N/A                                             | N/A                                                                                                                                                                                                                            |                       |                |            |  |
| FEMA Floodplain Compliance                                               | N/A                   | N/A                                             | The project streams do not have an associated regulatory<br>floodplain; however portions of UT1, UT1A, and UT2 are<br>located within the floodway and flood fringe of Reedy Fork<br>(FEMA Zone AE, FIRM panels 8838 and 8848). |                       |                |            |  |
|                                                                          | No                    | N/A                                             | N/A                                                                                                                                                                                                                            |                       |                |            |  |

**APPENDIX 2. Visual Assessment Data** 







A

ψ

Figure 3.0 Integrated Current Condition Plan View (Key) Agony Acres Mitigation Site DMS Project No. 95716 Monitoring Year 7 - 2021

Guilford County, NC

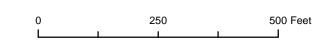
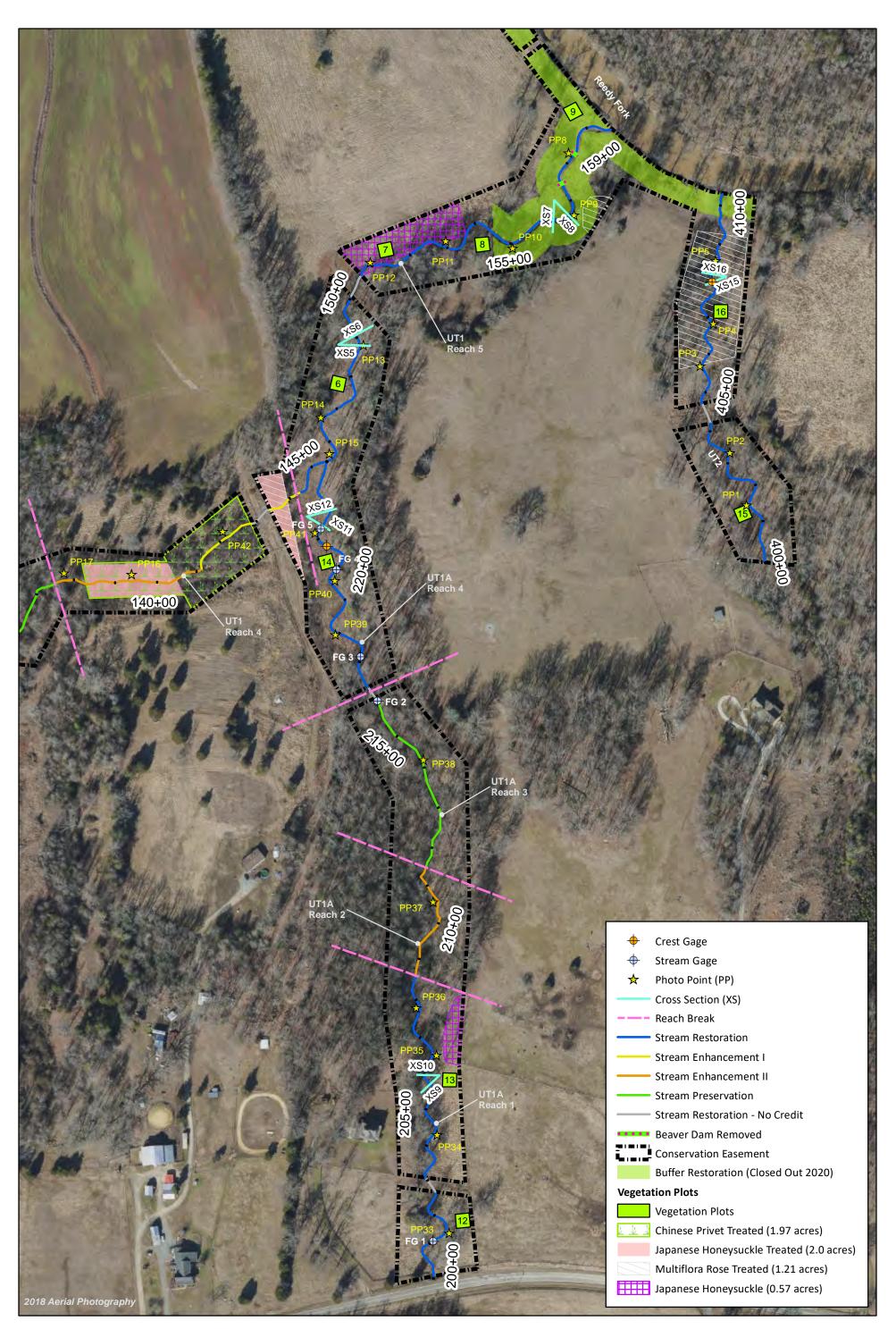




Figure 3.1. Integrated Current Condition Plan View (Sheet 1 of 2) Agony Acres Mitigation Site DMS Project No. 95716 Monitoring Year 7 - 2021


Δ

ψ

Guilford County, NC



WILDLANDS



WILDLANDS

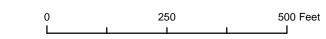



Figure 3.2. Integrated Current Condition Plan View (Sheet 2 of 2) Agony Acres Mitigation Site DMS Project No. 95716 Monitoring Year 7 - 2021

Δ

ψ

Guilford County, NC

# Table 5a. Visual Stream Morphology Stability Assessment TableAgony Acres Mitigation Site (DMS Project No. 95716)Monitoring Year 7 - 2021

#### UT1

Total Assessed Stream Length: 2,900 ft

| Major Channel<br>Category   | Channel Sub-Category   | Metric                                                                                                                                                                          | Number<br>Stable,<br>Performing as<br>Intended | Total Number<br>in As-Built | Number of<br>Unstable<br>Segments | Amount of<br>Unstable<br>Footage | % Stable,<br>Performing as<br>Intended | Number with<br>Stabilizing<br>Woody<br>Vegetation | Footage with<br>Stabilizing<br>Woody<br>Vegetation | Adjust % for<br>Stabilizing<br>Woody<br>Vegetation |
|-----------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------|-----------------------------------|----------------------------------|----------------------------------------|---------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
|                             | 1. Vertical Stability  | Aggradation                                                                                                                                                                     |                                                |                             | 0                                 | 0                                | 100%                                   |                                                   |                                                    |                                                    |
|                             | (Riffle and Run units) | Degradation                                                                                                                                                                     |                                                |                             | 0                                 | 0                                | 100%                                   |                                                   |                                                    |                                                    |
|                             | 2. Riffle Condition    | Texture/Substrate                                                                                                                                                               | 42                                             | 42                          |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                             | 3. Meander Pool        | Depth Sufficient                                                                                                                                                                | 39                                             | 39                          |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
| 1. Bed                      | Condition              | Length Appropriate                                                                                                                                                              | 39                                             | 39                          |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                             | 4 Thalweg Position     | Thalweg centering at upstream of<br>meander bend (Run)                                                                                                                          | 39                                             | 39                          |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                             | 4. Thalweg Position    | Thalweg centering at downstream of<br>meander bend (Glide)                                                                                                                      | 39                                             | 39                          |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                             | 1. Scoured/Eroded      | Bank lacking vegetative cover resulting<br>simply from poor growth and/or scour<br>and erosion                                                                                  |                                                |                             | 0                                 | 0                                | 100%                                   | n/a                                               | n/a                                                | n/a                                                |
| 2. Bank                     | 2. Undercut            | Banks undercut/overhanging to the<br>extent that mass wasting appears likely.<br>Does NOT include undercuts that are<br>modest, appear sustainable and are<br>providing habitat |                                                |                             | 0                                 | 0                                | 100%                                   | n/a                                               | n/a                                                | n/a                                                |
|                             | 3. Mass Wasting        | Bank slumping, caving, or collapse                                                                                                                                              |                                                |                             | 0                                 | 0                                | 100%                                   | n/a                                               | n/a                                                | n/a                                                |
|                             |                        |                                                                                                                                                                                 |                                                | TOTALS                      | 0                                 | 0                                | 100%                                   | n/a                                               | n/a                                                | n/a                                                |
|                             | 1. Overall Integrity   | Structures physically intact with no dislodged boulders or logs                                                                                                                 | 16                                             | 16                          |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                             | 2. Grade Control       | Grade control structures exhibiting maintenance of grade across the sill                                                                                                        | 16                                             | 16                          |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
| 3. Engineered<br>Structures | 2a. Piping             | Structures lacking any substantial flow underneath sills or arms                                                                                                                | 16                                             | 16                          |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
| Structures                  | 3. Bank Protection     | Bank erosion within the structures extent of influence does not exceed 15%                                                                                                      | 16                                             | 16                          |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                             | 4. Habitat             | Pool forming structures maintaining<br>∼Max Pool Depth : Bankfull Depth ≥ 1.6<br>Rootwads/logs providing some cover at<br>baseflow                                              | 16                                             | 16                          |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |

# Table 5b. Visual Stream Morphology Stability Assessment TableAgony Acres Mitigation Site (DMS Project No. 95716)Monitoring Year 7 - 2021

#### UT1A

Total Assessed Stream Length: 1,454 ft

| Major Channel<br>Category   | Channel Sub-Category   | Metric                                                                                                                                                                          | Number<br>Stable,<br>Performing as<br>Intended | Total Number<br>in As-Built | Number of<br>Unstable<br>Segments | Amount of<br>Unstable<br>Footage | % Stable,<br>Performing as<br>Intended | Number with<br>Stabilizing<br>Woody<br>Vegetation | Footage with<br>Stabilizing<br>Woody<br>Vegetation | Adjust % for<br>Stabilizing<br>Woody<br>Vegetation |
|-----------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------|-----------------------------------|----------------------------------|----------------------------------------|---------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
|                             | 1. Vertical Stability  | Aggradation                                                                                                                                                                     |                                                |                             | 0                                 | 0                                | 100%                                   |                                                   |                                                    |                                                    |
|                             | (Riffle and Run units) | Degradation                                                                                                                                                                     |                                                |                             | 0                                 | 0                                | 100%                                   |                                                   |                                                    |                                                    |
|                             | 2. Riffle Condition    | Texture/Substrate                                                                                                                                                               | 26                                             | 26                          |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                             | 3. Meander Pool        | Depth Sufficient                                                                                                                                                                | 26                                             | 26                          |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
| 1. Bed                      | Condition              | Length Appropriate                                                                                                                                                              | 26                                             | 26                          |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                             | 4 Thalwag Position     | Thalweg centering at upstream of<br>meander bend (Run)                                                                                                                          | 26                                             | 26                          |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                             | 4. Thalweg Position    | Thalweg centering at downstream of<br>meander bend (Glide)                                                                                                                      | 26                                             | 26                          |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                             | 1. Scoured/Eroded      | Bank lacking vegetative cover resulting<br>simply from poor growth and/or scour<br>and erosion                                                                                  |                                                |                             | 0                                 | 0                                | 100%                                   | n/a                                               | n/a                                                | n/a                                                |
| 2. Bank                     | 2. Undercut            | Banks undercut/overhanging to the<br>extent that mass wasting appears likely.<br>Does NOT include undercuts that are<br>modest, appear sustainable and are<br>providing habitat |                                                |                             | 0                                 | 0                                | 100%                                   | n/a                                               | n/a                                                | n/a                                                |
|                             | 3. Mass Wasting        | Bank slumping, caving, or collapse                                                                                                                                              |                                                |                             | 0                                 | 0                                | 100%                                   | n/a                                               | n/a                                                | n/a                                                |
|                             |                        |                                                                                                                                                                                 |                                                | TOTALS                      | 0                                 | 0                                | 100%                                   | n/a                                               | n/a                                                | n/a                                                |
|                             | 1. Overall Integrity   | Structures physically intact with no<br>dislodged boulders or logs                                                                                                              | 3                                              | 3                           |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                             | 2. Grade Control       | Grade control structures exhibiting maintenance of grade across the sill                                                                                                        | 3                                              | 3                           |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
| 3. Engineered<br>Structures | 2a. Piping             | Structures lacking any substantial flow underneath sills or arms                                                                                                                | 3                                              | 3                           |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
| Structures                  | 3. Bank Protection     | Bank erosion within the structures<br>extent of influence does not exceed 15%                                                                                                   | 3                                              | 3                           |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                             | 4. Habitat             | Pool forming structures maintaining<br>~Max Pool Depth : Bankfull Depth≥ 1.6<br>Rootwads/logs providing some cover at<br>baseflow                                               | 3                                              | 3                           |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |

# Table 5c. Visual Stream Morphology Stability Assessment TableAgony Acres Mitigation Site (DMS Project No. 95716)Monitoring Year 7 - 2021

#### UT1B

Total Assessed Stream Length: 219 ft

| Major Channel<br>Category | Channel Sub-Category   | Metric                                                                                                                                                                          | Number<br>Stable,<br>Performing as<br>Intended | Total Number<br>in As-Built | Number of<br>Unstable<br>Segments | Amount of<br>Unstable<br>Footage | % Stable,<br>Performing as<br>Intended | Number with<br>Stabilizing<br>Woody<br>Vegetation | Footage with<br>Stabilizing<br>Woody<br>Vegetation | Adjust % for<br>Stabilizing<br>Woody<br>Vegetation |
|---------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------|-----------------------------------|----------------------------------|----------------------------------------|---------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
|                           | 1. Vertical Stability  | Aggradation                                                                                                                                                                     |                                                |                             | 0                                 | 0                                | 100%                                   |                                                   |                                                    |                                                    |
|                           | (Riffle and Run units) | Degradation                                                                                                                                                                     |                                                |                             | 0                                 | 0                                | 100%                                   |                                                   |                                                    |                                                    |
|                           | 2. Riffle Condition    | Texture/Substrate                                                                                                                                                               | 6                                              | 6                           |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                           | 3. Meander Pool        | Depth Sufficient                                                                                                                                                                | 5                                              | 5                           |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
| 1. Bed                    | Condition              | Length Appropriate                                                                                                                                                              | 5                                              | 5                           |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                           | 4. Thalweg Position    | Thalweg centering at upstream of<br>meander bend (Run)                                                                                                                          | 5                                              | 5                           |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                           |                        | Thalweg centering at downstream of<br>meander bend (Glide)                                                                                                                      | 5                                              | 5                           |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                           | 1. Scoured/Eroded      | Bank lacking vegetative cover resulting<br>simply from poor growth and/or scour<br>and erosion                                                                                  |                                                |                             | 0                                 | 0                                | 100%                                   | n/a                                               | n/a                                                | n/a                                                |
| 2. Bank                   | 2. Undercut            | Banks undercut/overhanging to the<br>extent that mass wasting appears likely.<br>Does NOT include undercuts that are<br>modest, appear sustainable and are<br>providing habitat |                                                |                             | 0                                 | 0                                | 100%                                   | n/a                                               | n/a                                                | n/a                                                |
|                           | 3. Mass Wasting        | Bank slumping, caving, or collapse                                                                                                                                              |                                                |                             | 0                                 | 0                                | 100%                                   | n/a                                               | n/a                                                | n/a                                                |
|                           |                        |                                                                                                                                                                                 |                                                | TOTALS                      | 0                                 | 0                                | 100%                                   | n/a                                               | n/a                                                | n/a                                                |
|                           | 1. Overall Integrity   | Structures physically intact with no<br>dislodged boulders or logs                                                                                                              | 1                                              | 1                           |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                           | 2. Grade Control       | Grade control structures exhibiting maintenance of grade across the sill                                                                                                        | 1                                              | 1                           |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
| 3. Engineered             | 2a. Piping             | Structures lacking any substantial flow<br>underneath sills or arms                                                                                                             | 1                                              | 1                           |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
| Structures                | 3. Bank Protection     | Bank erosion within the structures<br>extent of influence does not exceed 15%                                                                                                   | 1                                              | 1                           |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                           | 4. Habitat             | Pool forming structures maintaining<br>∼Max Pool Depth : Bankfull Depth ≥ 1.6<br>Rootwads/logs providing some cover at<br>baseflow                                              | 1                                              | 1                           |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |

# Table 5d. Visual Stream Morphology Stability Assessment TableAgony Acres Mitigation Site (DMS Project No. 95716)Monitoring Year 7 - 2021

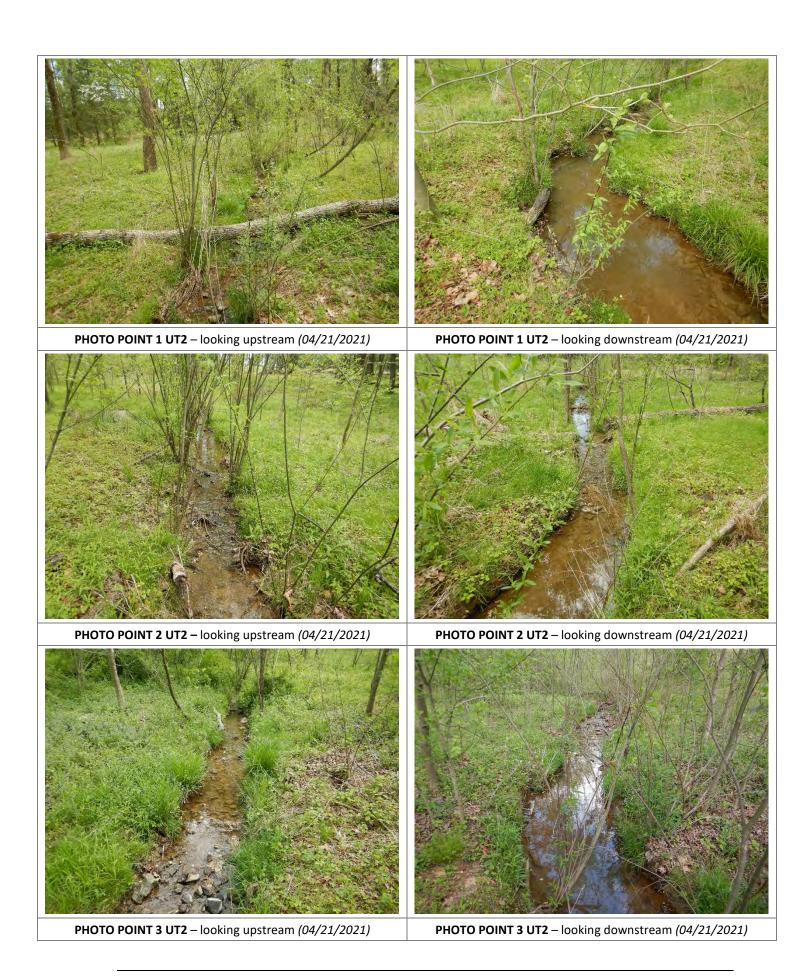
UT2

Total Assessed Stream Length: 972

| 012                         |                        |                                                                                                                                                                                 |                                                |                             |                                   |                                  | 1018                                   | 1 A33C33EU JU                                     | ream Length:                                       | 972                                                |
|-----------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------|-----------------------------------|----------------------------------|----------------------------------------|---------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| Major Channel<br>Category   | Channel Sub-Category   | Metric                                                                                                                                                                          | Number<br>Stable,<br>Performing as<br>Intended | Total Number<br>in As-Built | Number of<br>Unstable<br>Segments | Amount of<br>Unstable<br>Footage | % Stable,<br>Performing as<br>Intended | Number with<br>Stabilizing<br>Woody<br>Vegetation | Footage with<br>Stabilizing<br>Woody<br>Vegetation | Adjust % for<br>Stabilizing<br>Woody<br>Vegetation |
|                             | 1. Vertical Stability  | Aggradation                                                                                                                                                                     |                                                |                             | 0                                 | 0                                | 100%                                   |                                                   |                                                    |                                                    |
|                             | (Riffle and Run units) | Degradation                                                                                                                                                                     |                                                |                             | 0                                 | 0                                | 100%                                   |                                                   |                                                    |                                                    |
|                             | 2. Riffle Condition    | Texture/Substrate                                                                                                                                                               | 20                                             | 20                          |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                             | 3. Meander Pool        | Depth Sufficient                                                                                                                                                                | 21                                             | 21                          |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
| . Bed                       | Condition              | Length Appropriate                                                                                                                                                              | 21                                             | 21                          |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                             | 4. Thalweg Position    | Thalweg centering at upstream of<br>meander bend (Run)                                                                                                                          | 21                                             | 21                          |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                             | 4. maiweg rosition     | Thalweg centering at downstream of<br>meander bend (Glide)                                                                                                                      | 21                                             | 21                          |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                             |                        | I- · · · · · · · · · · · · · · · · · · ·                                                                                                                                        |                                                |                             |                                   |                                  | 1                                      | -                                                 |                                                    |                                                    |
|                             | 1. Scoured/Eroded      | Bank lacking vegetative cover resulting<br>simply from poor growth and/or scour<br>and erosion                                                                                  |                                                |                             | 0                                 | 0                                | 100%                                   | n/a                                               | n/a                                                | n/a                                                |
| 2. Bank                     | 2. Undercut            | Banks undercut/overhanging to the<br>extent that mass wasting appears likely.<br>Does NOT include undercuts that are<br>modest, appear sustainable and are<br>providing habitat |                                                |                             | 0                                 | 0                                | 100%                                   | n/a                                               | n/a                                                | n/a                                                |
|                             | 3. Mass Wasting        | Bank slumping, caving, or collapse                                                                                                                                              |                                                |                             | 0                                 | 0                                | 100%                                   | n/a                                               | n/a                                                | n/a                                                |
|                             |                        |                                                                                                                                                                                 |                                                | TOTALS                      | 0                                 | 0                                | 100%                                   | n/a                                               | n/a                                                | n/a                                                |
|                             | 1. Overall Integrity   | Structures physically intact with no dislodged boulders or logs                                                                                                                 | 5                                              | 5                           |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                             | 2. Grade Control       | Grade control structures exhibiting maintenance of grade across the sill                                                                                                        | 5                                              | 5                           |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
| 3. Engineered<br>Structures | 2a. Piping             | Structures lacking any substantial flow underneath sills or arms                                                                                                                | 5                                              | 5                           |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                             | 3. Bank Protection     | Bank erosion within the structures extent of influence does not exceed 15%                                                                                                      | 5                                              | 5                           |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |
|                             | 4. Habitat             | Pool forming structures maintaining<br>∼Max Pool Depth : Bankfull Depth ≥ 1.6<br>Rootwads/logs providing some cover at<br>baseflow                                              | 5                                              | 5                           |                                   |                                  | 100%                                   |                                                   |                                                    |                                                    |

# Table 6. Vegetation Condition Assessment Table Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 7 - 2021

| Planted Acreage                     | 18                                                                                          |                              |                          |                     |                            |  |  |
|-------------------------------------|---------------------------------------------------------------------------------------------|------------------------------|--------------------------|---------------------|----------------------------|--|--|
| Vegetation Category                 | Definitions                                                                                 | Mapping<br>Threshold<br>(Ac) | Number<br>of<br>Polygons | Combined<br>Acreage | % of<br>Planted<br>Acreage |  |  |
| Bare Areas                          | Very limited cover of both woody and herbaceous material                                    | 0.1                          | 0                        | 0                   | 0.0%                       |  |  |
| Low Stem Density Areas              | Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria. | 0.1                          | 0                        | 0.0                 | 0.0%                       |  |  |
|                                     |                                                                                             | Total                        | 0                        | 0.0                 | 0.0%                       |  |  |
| Areas of Poor Growth Rates or Vigor | Areas with woody stems of a size class that are obviously small given the monitoring year.  | 0.25 Ac                      | 0                        | 0                   | 0%                         |  |  |
|                                     | Cumulative Tot                                                                              |                              |                          |                     |                            |  |  |


Easement Acreage

31

| Vegetation Category         | Definitions                                                        | Mapping<br>Threshold<br>(SF) | Number<br>of<br>Polygons | Combined<br>Acreage | % of<br>Planted<br>Acreage |
|-----------------------------|--------------------------------------------------------------------|------------------------------|--------------------------|---------------------|----------------------------|
| Invasive Areas of Concern   | Areas or points (if too small to render as polygons at map scale). | 1,000                        | 12                       | 5.1                 | 16.6%                      |
|                             |                                                                    |                              |                          |                     |                            |
| Easement Encroachment Areas | Areas or points (if too small to render as polygons at map scale). | none                         | 0                        | 0                   | 0%                         |

<sup>+</sup> Overlapping polygons in which multiple invasive species were present or treated were counted as a single polygon and area such that combined acreage in this table is the true area of invasive species presence or treatment.

STREAM PHOTOGRAPHS Monitoring Year 7



S



**PHOTO POINT 4 UT2** – looking upstream (04/21/2021)



PHOTO POINT 4 UT2 – looking downstream (04/21/2021)



**PHOTO POINT 5 UT2** – looking upstream (04/21/2021)



PHOTO POINT 5 UT2 – looking downstream (04/21/2021)



PHOTO POINT 8 UT1 R5 - looking upstream (04/21/2021)



PHOTO POINT 8 UT1 R5 - looking downstream (04/21/2021)





PHOTO POINT 9 UT1 R5 – looking upstream (04/21/2021)



PHOTO POINT 9 UT1 R5 - looking downstream (04/21/2021)



PHOTO POINT 10 UT1 R5 - looking upstream (04/21/2021)



PHOTO POINT 10 UT1 R5 - looking downstream (04/21/2021)



PHOTO POINT 11 UT1 R5 - looking upstream (04/21/2021)



PHOTO POINT 11 UT1 R5 - looking downstream (04/21/2021)





PHOTO POINT 12 UT1 R5 – looking upstream (04/21/2021)



PHOTO POINT 12 UT1 R5 – looking downstream (04/21/2021)



PHOTO POINT 13 UT1 R5 – looking upstream (04/21/2021)



PHOTO POINT 13 UT1 R5 - looking downstream (04/21/2021)



PHOTO POINT 14 UT1 R5 - looking upstream (04/21/2021)



PHOTO POINT 14 UT1 R5 - looking downstream (04/21/2021)





PHOTO POINT 15 UT1 R5 – looking upstream (04/21/2021)



PHOTO POINT 16 UT1 R4 – looking upstream (04/21/2021)



PHOTO POINT 15 UT1 R5 – looking downstream (04/21/2021)



PHOTO POINT 16 UT1 R4 – looking downstream (04/21/2021)



PHOTO POINT 17 UT1 R4 - looking upstream (04/21/2021)



PHOTO POINT 17 UT1 R4 - looking downstream (04/21/2021)





PHOTO POINT 42 UT1 R4 – looking upstream (04/21/2021)



PHOTO POINT 42 UT1 R4 – looking downstream (04/21/2021)



PHOTO POINT 18 UT1 R3 – looking upstream (04/21/2021)



PHOTO POINT 18 UT1 R3 – looking downstream (04/21/2021)



PHOTO POINT 19 UT1 R3 - looking upstream (04/21/2021)



PHOTO POINT 19 UT1 R3 - looking downstream (04/21/2021)





PHOTO POINT 20 UT1 R3 – looking upstream (04/21/2021)



PHOTO POINT 20 UT1 R3 – looking downstream (04/21/2021)





PHOTO POINT 22 UT1 R2 - looking upstream (04/21/2021)



PHOTO POINT 22 UT1 R2 - looking downstream (04/21/2021)





PHOTO POINT 23 UT1 R2 - looking upstream (04/21/2021)



PHOTO POINT 24 UT1 R2 - looking upstream (04/21/2021)



PHOTO POINT 23 UT1 R2 - looking downstream (04/21/2021)



PHOTO POINT 24 UT1 R2 - looking downstream (04/21/2021)



PHOTO POINT 25 UT1 R2 - looking upstream (04/21/2021)



PHOTO POINT 25 UT1 R2 - looking downstream (04/21/2021)





PHOTO POINT 26 UT1 R2 – looking upstream (04/21/2021)



PHOTO POINT 26 UT1 R2 – looking downstream (04/21/2021)



PHOTO POINT 27 UT1 R2 – looking upstream (04/21/2021)



PHOTO POINT 27 UT1 R2 - looking downstream (04/21/2021)



PHOTO POINT 28 UT1 R1 - looking upstream (04/21/2021)



PHOTO POINT 28 UT1 R1 - looking downstream (04/21/2021)





PHOTO POINT 29 UT1 R1 – looking upstream (04/21/2021)



PHOTO POINT 29 UT1 R1 – looking downstream (04/21/2021)



PHOTO POINT 30 UT1 R1 – looking upstream (04/21/2021)



PHOTO POINT 30 UT1 R1 - looking downstream (04/21/2021)



PHOTO POINT 31 UT1 R1 - looking upstream (04/21/2021)



PHOTO POINT 31 UT1 R1 – looking downstream (04/21/2021)





PHOTO POINT 32 UT1 R1 – looking upstream (04/21/2021)



PHOTO POINT 32 UT1 R1 – looking downstream (04/21/2021)



PHOTO POINT 33 UT1A R1 – looking upstream (04/21/2021)



PHOTO POINT 33 UT1A R1 – looking downstream (04/21/2021)



PHOTO POINT 34 UT1A R1 – looking upstream (04/21/2021)



PHOTO POINT 34 UT1A R1 – looking downstream (04/21/2021)





PHOTO POINT 35 UT1A R1 – looking upstream (04/21/2021)



PHOTO POINT 35 UT1A R1 – looking downstream (04/21/2021)



PHOTO POINT 36 UT1A R1 – looking upstream (04/21/2021)



PHOTO POINT 36 UT1A R1 – looking downstream (04/21/2021)



PHOTO POINT 37 UT1A R2 - looking upstream (04/21/2021)



PHOTO POINT 37 UT1A R2 - looking downstream (04/21/2021)





PHOTO POINT 38 UT1A R3 - looking upstream (04/21/2021)



PHOTO POINT 38 UT1A R3 – looking downstream (04/21/2021)



PHOTO POINT 39 UT1A R4 – looking upstream 04/21/2021)



PHOTO POINT 39 UT1A R4 - looking downstream (04/21/2021)



PHOTO POINT 40 UT1A R4 – looking upstream (04/21/2021)



PHOTO POINT 40 UT1A R4 - looking downstream (04/21/2021)



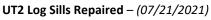


PHOTO POINT 41 UT1A R4 – looking upstream (04/21/2021)

PHOTO POINT 41 UT1A R4 – looking downstream (04/21/2021)



REPAIRED STREAM AREAS OF CONCERN PHOTOGRAPHS Monitoring Year 7




UT1A Perched Culvert - (04/17/2020)

**UT1A Culvert Repaired** – (07/21/2021)



UT2 Piping Log Sills - (04/17/2020)





UT1 Isolated Bank Erosion – (09/23/2020)



UT1 Isolated Bank Erosion with Vegetative Stabilization – (07/21/2021)



Agony Acres Mitigation Site Stream Areas of Concern Photographs VEGETATION PHOTOGRAPHS Agony Acres Monitoring Year 7





VEG PLOT 5 (8/18/2021)

**VEG PLOT 6** (8/18/2021)





VEG PLOT 13 (8/18/2021)

**VEG PLOT 14** (8/18/2021)





VEG PLOT 15 (8/18/2021)

VEG PLOT 16 (8/18/2021)



APPENDIX 3. Vegetation Plot Data

# Table 7. Vegetation Plot Criteria AttainmentAgony Acres Mitigation Site (DMS Project No. 95716)Monitoring Year 7 - 2021

| Plot | Success Criteria<br>Met (Y/N) | Tract Mean |
|------|-------------------------------|------------|
| 1    | Y                             |            |
| 2    | Y                             |            |
| 3    | Y                             |            |
| 4    | Y                             |            |
| 5    | Y                             |            |
| 6    | Y                             |            |
| 7    | Y                             | 100%       |
| 8    | Y                             | 100%       |
| 9    | Y                             |            |
| 12   | Y                             |            |
| 13   | Y                             |            |
| 14   | Y                             |            |
| 15   | Y                             |            |
| 16   | Y                             |            |

\*Vegetation Plots 10 and 11 were located in the Buffer Mitigation portion of the site which closed out during MY5.

Table 7a. Vegetation Plot Criteria Attainment: Average Height by PlotAgony Acres Mitigation Site (DMS Project No 95716)Monitoring Year 7 - 2021

|      | Ave | erage Heigh | t by Plot (fe | eet) |      |
|------|-----|-------------|---------------|------|------|
| Plot | MY1 | MY2         | MY3           | MY5  | MY7  |
| 1    | 2.6 | 3.0         | 4.5           | 8.9  | 14.1 |
| 2    | 2.4 | 2.5         | 3.3           | 7.4  | 11.3 |
| 3    | 2.9 | 3.1         | 4.6           | 11.5 | 15.7 |
| 4    | 2.8 | 3.3         | 6.3           | 15.5 | 20.8 |
| 5    | 2.5 | 2.5         | 4.6           | 8.4  | 12.6 |
| 6    | 3.1 | 3.4         | 4.9           | 10.6 | 16.2 |
| 7    | 3.0 | 2.8         | 5.6           | 11.3 | 16.5 |
| 8    | 3.1 | 3.7         | 8.6           | 18.1 | 24.6 |
| 9    | 3.0 | 3.3         | 6.5           | 12.4 | 18.9 |
| 12   | 2.6 | 2.7         | 3.6           | 9.9  | 17.5 |
| 13   | 2.7 | 2.6         | 4.3           | 8.4  | 15.2 |
| 14   | 2.9 | 3.4         | 6.1           | 10.6 | 15.9 |
| 15   | 3.0 | 2.7         | 5.0           | 10.7 | 15.0 |
| 16   | 2.6 | 3.3         | 5.9           | 12.2 | 17.9 |

### Table 8. CVS Vegetation Plot Metadata

Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 7 - 2021

| - · · ·                             |                                                                                                                                                           |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Database name                       | Agony Acres- MY7- v2.3.1.mdb                                                                                                                              |
| Database location                   | F:\Projects\005-02136 Agony Acres\Monitoring\Monitoring Year 7\Vegetation Assessment                                                                      |
| Computer name                       | JASON-PC                                                                                                                                                  |
| File size                           | 68157440                                                                                                                                                  |
| DESCRIPTION OF WORKSHEETS IN THIS I | DOCUMENT                                                                                                                                                  |
| Metadata                            | Description of database file, the report worksheets, and a summary of project(s) and project data.                                                        |
| Proj, planted                       | Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.                                                         |
| Proj, total stems                   | Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.       |
| Plots                               | List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).                                                            |
| Vigor                               | Frequency distribution of vigor classes for stems for all plots.                                                                                          |
| Vigor by Spp                        | Frequency distribution of vigor classes listed by species.                                                                                                |
| Damage                              | List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.                                              |
| Damage by Spp                       | Damage values tallied by type for each species.                                                                                                           |
| Damage by Plot                      | Damage values tallied by type for each plot.                                                                                                              |
| Planted Stems by Plot and Spp       | A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.                                         |
| ALL Stems by Plot and spp           | A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded. |
| PROJECT SUMMARY                     |                                                                                                                                                           |
| Project Code                        | 95716                                                                                                                                                     |
| project Name                        | Agony Acres Mitigation Site                                                                                                                               |
| Description                         | Stream & Buffer Site                                                                                                                                      |
| River Basin                         | Cape Fear                                                                                                                                                 |
| Sampled Plots                       | 14                                                                                                                                                        |

| _                       |                    |                |       |       |       |       |       | Cur | rent Plo | t Data | (MY7 2 | 021)  |       |     |       |       |     |
|-------------------------|--------------------|----------------|-------|-------|-------|-------|-------|-----|----------|--------|--------|-------|-------|-----|-------|-------|-----|
|                         |                    |                |       | VP 1  |       |       | VP 2  |     |          | VP 3   |        |       | VP 4  |     |       | VP 5  |     |
| Scientific Name         | Common Name        | Species Type   | PnoLS | P-all | т     | PnoLS | P-all | т   | PnoLS    | P-all  | Т      | PnoLS | P-all | т   | PnoLS | P-all | Т   |
| Acer negundo            | boxelder           | Tree           |       |       |       |       |       | 1   |          |        |        |       |       | 1   |       |       |     |
| Acer rubrum             | red maple          | Tree           |       |       |       |       |       |     |          |        |        |       |       |     |       |       |     |
| Ailanthus altissima     | tree of heaven     | Exotic         |       |       |       |       |       |     |          |        |        |       |       |     |       |       | 1   |
| Alnus serrulata         | hazel alder        | Shrub          |       |       |       |       |       |     | 1        | 1      | 1      |       |       |     |       |       |     |
| Betula nigra            | river birch        | Tree           |       |       |       | 1     | 1     | 1   | 2        | 2      | 2      | 3     | 3     | 3   |       |       |     |
| Cornus amomum           | silky dogwood      | Shrub          |       |       |       |       |       |     |          |        |        |       |       |     |       |       |     |
| Diospyros virginiana    | common persimmon   | Tree           |       |       |       |       |       |     |          |        |        |       |       |     |       |       |     |
| Fraxinus pennsylvanica  | green ash          | Tree           | 3     | 3     | 3     | 4     | 4     | 4   | 3        | 3      | 3      | 2     | 2     | 2   | 2     | 2     | 2   |
| Gleditsia triacanthos   | honeylocust        | Tree           |       |       |       |       |       |     |          |        |        |       |       |     |       |       |     |
| Ilex opaca              | American holly     | Tree           |       |       | 2     |       |       |     |          |        |        |       |       |     |       |       |     |
| Juglans nigra           | black walnut       | Tree           |       |       |       |       |       | 1   |          |        |        |       |       |     |       |       |     |
| Juniperus virginiana    | eastern redcedar   | Tree           |       |       | 4     |       |       |     |          |        |        |       |       |     |       |       |     |
| Liquidambar styraciflua | sweetgum           | Tree           |       |       | 14    |       |       | 3   |          |        | 2      |       |       | 4   |       |       |     |
| Liriodendron tulipifera | tuliptree          | Tree           |       |       | 3     |       |       |     |          |        |        |       |       | 3   |       |       |     |
| Nyssa sylvatica         | blackgum           | Tree           |       |       |       |       |       | 1   |          |        |        |       |       |     |       |       |     |
| Platanus occidentalis   | American sycamore  | Tree           | 3     | 3     | 3     |       |       |     | 4        | 4      | 4      | 4     | 4     | 7   | 2     | 2     | 2   |
| Quercus alba            | white oak          | Tree           |       |       |       |       |       |     |          |        |        |       |       |     |       |       |     |
| Quercus michauxii       | swamp chestnut oak | Tree           |       |       |       | 1     | 1     | 1   | 1        | 1      | 1      | 1     | 1     | 1   | 5     | 5     | 5   |
| Quercus pagoda          | cherrybark oak     | Tree           | 2     | 2     | 2     | 3     | 3     | 3   | 1        | 1      | 1      | 2     | 2     | 2   |       |       |     |
| Quercus phellos         | willow oak         | Tree           | 2     | 2     | 2     | 1     | 1     | 1   | 2        | 2      | 2      | 1     | 1     | 1   | 1     | 1     | 1   |
| Quercus rubra           | northern red oak   | Tree           |       |       |       |       |       |     |          |        |        |       |       |     |       |       |     |
| Quercus velutina        | black oak          | Tree           |       |       |       |       |       |     |          |        |        |       |       |     |       |       |     |
| Rhus                    | sumac              | Shrub          |       |       |       |       |       |     |          |        |        |       |       |     |       |       |     |
| Rhus copallinum         | flameleaf sumac    | Shrub          |       |       |       |       |       |     |          |        |        |       |       |     |       |       |     |
| Sambucus                | elderberry         | Shrub          |       |       |       |       |       |     |          |        | 2      |       |       |     |       |       |     |
| Ulmus                   | elm                | Tree           |       |       |       |       |       |     |          |        |        |       |       |     |       |       |     |
|                         |                    | Stem count     | 10    | 10    | 33    | 10    | 10    | 16  | 14       | 14     | 18     | 13    | 13    | 24  | 10    | 10    | 10  |
|                         |                    | size (ares)    |       | 1     |       |       | 1     |     |          | 1      |        |       | 1     |     |       | 1     |     |
|                         |                    | size (ACRES)   |       | 0.02  |       |       | 0.02  |     |          | 0.02   |        |       | 0.02  |     |       | 0.02  |     |
|                         |                    | Species count  | 4     | 4     | 8     | 5     | 5     | 9   | 7        | 7      | 9      | 6     | 6     | 9   | 4     | 4     | 5   |
|                         |                    | Stems per ACRE | 405   | 405   | 1,335 | 405   | 405   | 647 | 567      | 567    | 728    | 526   | 526   | 971 | 405   | 405   | 405 |

#### Color Coding for Table

Exceeds requirements by 10% Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteer species included in total

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes,

| _                       |                    |                |       |       |       |       |       | Cur   | rent Plo | ot Data | (MY7 2 | 021)  |       |       |       |       |     |
|-------------------------|--------------------|----------------|-------|-------|-------|-------|-------|-------|----------|---------|--------|-------|-------|-------|-------|-------|-----|
|                         |                    |                |       | VP 6  |       |       | VP 7  |       |          | VP 8    |        |       | VP 9  |       |       | VP 12 |     |
| Scientific Name         | Common Name        | Species Type   | PnoLS | P-all | т     | PnoLS | P-all | т     | PnoLS    | P-all   | Т      | PnoLS | P-all | Т     | PnoLS | P-all | т   |
| Acer negundo            | boxelder           | Tree           |       |       | 5     |       |       |       |          |         | 2      |       |       | 47    |       |       |     |
| Acer rubrum             | red maple          | Tree           |       |       | 3     |       |       |       |          |         | 3      |       |       |       |       |       |     |
| Ailanthus altissima     | tree of heaven     | Exotic         |       |       |       |       |       |       |          |         |        |       |       |       |       |       |     |
| Alnus serrulata         | hazel alder        | Shrub          | 4     | 4     | 4     |       |       |       |          |         |        |       |       |       |       |       |     |
| Betula nigra            | river birch        | Tree           | 4     | 4     | 4     | 3     | 3     | 3     | 1        | 1       | 1      |       |       |       |       |       |     |
| Cornus amomum           | silky dogwood      | Shrub          |       |       |       |       |       |       |          |         |        |       |       |       |       |       |     |
| Diospyros virginiana    | common persimmon   | Tree           |       |       |       |       |       |       |          |         |        |       |       |       |       |       |     |
| Fraxinus pennsylvanica  | green ash          | Tree           | 2     | 2     | 6     | 3     | 3     | 3     | 4        | 4       | 5      | 5     | 5     | 29    | 3     | 3     | 3   |
| Gleditsia triacanthos   | honeylocust        | Tree           |       |       |       |       |       |       |          |         |        |       |       |       |       |       |     |
| Ilex opaca              | American holly     | Tree           |       |       |       |       |       |       |          |         |        |       |       |       |       |       |     |
| Juglans nigra           | black walnut       | Tree           |       |       |       |       |       |       |          |         |        |       |       |       |       |       |     |
| Juniperus virginiana    | eastern redcedar   | Tree           |       |       |       |       |       |       |          |         |        |       |       |       |       |       |     |
| Liquidambar styraciflua | sweetgum           | Tree           |       |       | 12    |       |       | 2     |          |         | 3      |       |       |       |       |       | 1   |
| Liriodendron tulipifera | tuliptree          | Tree           |       |       | 10    |       |       |       |          |         |        |       |       | 1     |       |       |     |
| Nyssa sylvatica         | blackgum           | Tree           |       |       |       |       |       |       |          |         |        |       |       |       |       |       |     |
| Platanus occidentalis   | American sycamore  | Tree           | 2     | 2     | 22    | 3     | 3     | 12    | 5        | 5       | 5      | 4     | 4     | 4     | 4     | 4     | 4   |
| Quercus alba            | white oak          | Tree           |       |       | 1     |       |       |       |          |         |        |       |       |       |       |       |     |
| Quercus michauxii       | swamp chestnut oak | Tree           | 2     | 2     | 2     | 4     | 4     | 4     | 1        | 1       | 1      |       |       |       | 1     | 1     | 1   |
| Quercus pagoda          | cherrybark oak     | Tree           | 1     | 1     | 1     |       |       |       |          |         |        |       |       |       | 1     | 1     | 1   |
| Quercus phellos         | willow oak         | Tree           |       |       |       |       |       |       |          |         |        |       |       |       |       |       |     |
| Quercus rubra           | northern red oak   | Tree           |       |       |       |       |       |       |          |         |        |       |       |       |       |       |     |
| Quercus velutina        | black oak          | Tree           |       |       |       |       |       |       |          |         |        |       |       |       |       |       |     |
| Rhus                    | sumac              | Shrub          |       |       |       |       |       |       |          |         |        |       |       |       |       |       |     |
| Rhus copallinum         | flameleaf sumac    | Shrub          |       |       |       |       |       |       |          |         |        |       |       |       |       |       |     |
| Sambucus                | elderberry         | Shrub          |       |       |       |       |       |       |          |         |        |       |       |       |       |       |     |
| Ulmus                   | elm                | Tree           |       |       |       |       |       | 6     |          |         |        |       |       |       |       |       |     |
|                         |                    | Stem count     | 15    | 15    | 70    | 13    | 13    | 30    | 11       | 11      | 20     | 9     | 9     | 81    | 9     | 9     | 9   |
|                         |                    | size (ares)    |       | 1     |       |       | 1     |       |          | 1       |        |       | 1     |       |       | 1     |     |
|                         |                    | size (ACRES)   |       | 0.02  |       |       | 0.02  |       |          | 0.02    |        |       | 0.02  |       |       | 0.02  |     |
|                         |                    | Species count  |       | 6     | 11    | 4     | 4     | 6     | 4        | 4       | 7      | 2     | 2     | 4     | 4     | 4     | 4   |
|                         |                    | Stems per ACRE | 607   | 607   | 2,833 | 526   | 526   | 1,214 | 445      | 445     | 809    | 364   | 364   | 3,278 | 364   | 364   | 364 |

#### Color Coding for Table

Exceeds requirements by 10% Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteer species included in total PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes,

| _                       |                    |                |       |       |     |       | Current | : Plot D | ata (MY | 7 2021 | )   |       |       |       | Anr   | ual Me  | ans   |
|-------------------------|--------------------|----------------|-------|-------|-----|-------|---------|----------|---------|--------|-----|-------|-------|-------|-------|---------|-------|
|                         |                    |                |       | VP 13 |     |       | VP 14   |          |         | VP 15  |     |       | VP 16 |       | M     | Y7 (202 | 1)    |
| Scientific Name         | Common Name        | Species Type   | PnoLS | P-all | Т   | PnoLS | P-all   | т        | PnoLS   | P-all  | Т   | PnoLS | P-all | т     | PnoLS | P-all   | Т     |
| Acer negundo            | boxelder           | Tree           |       |       |     |       |         | 1        |         |        |     |       |       | 4     |       |         | 61    |
| Acer rubrum             | red maple          | Tree           |       |       |     |       |         |          |         |        |     |       |       | 4     |       |         | 10    |
| Ailanthus altissima     | tree of heaven     | Exotic         |       |       |     |       |         |          |         |        |     |       |       |       |       |         | 1     |
| Alnus serrulata         | hazel alder        | Shrub          |       |       |     | 1     | 1       | 1        |         |        |     | 1     | 1     | 1     | 7     | 7       | 7     |
| Betula nigra            | river birch        | Tree           | 3     | 3     | 3   | 2     | 2       | 2        |         |        |     |       |       |       | 19    | 19      | 19    |
| Cornus amomum           | silky dogwood      | Shrub          |       |       |     |       |         |          |         |        |     |       |       |       |       |         |       |
| Diospyros virginiana    | common persimmon   | Tree           |       |       |     |       |         |          |         |        |     |       |       |       |       |         | 3     |
| Fraxinus pennsylvanica  | green ash          | Tree           | 2     | 2     | 2   |       |         | 1        | 3       | 3      | 5   | 2     | 2     | 42    | 38    | 38      | 110   |
| Gleditsia triacanthos   | honeylocust        | Tree           |       |       |     |       |         |          |         |        |     |       |       |       |       |         | 1     |
| Ilex opaca              | American holly     | Tree           |       |       |     |       |         | 1        |         |        |     |       |       |       |       |         | 3     |
| Juglans nigra           | black walnut       | Tree           |       |       |     |       |         |          |         |        |     |       |       |       |       |         | 1     |
| Juniperus virginiana    | eastern redcedar   | Tree           |       |       |     |       |         |          |         |        |     |       |       |       |       |         | 4     |
| Liquidambar styraciflua | sweetgum           | Tree           |       |       |     |       |         | 30       |         |        |     |       |       |       |       |         | 70    |
| Liriodendron tulipifera | tuliptree          | Tree           |       |       | 1   |       |         | 36       |         |        |     |       |       | 85    |       |         | 139   |
| Nyssa sylvatica         | blackgum           | Tree           |       |       |     |       |         |          |         |        |     |       |       |       |       |         | 1     |
| Platanus occidentalis   | American sycamore  | Tree           |       |       |     | 3     | 3       | 33       | 4       | 4      | 8   | 3     | 3     | 3     | 41    | 41      | 107   |
| Quercus alba            | white oak          | Tree           |       |       |     |       |         |          |         |        |     |       |       |       |       |         | 1     |
| Quercus michauxii       | swamp chestnut oak | Tree           | 6     | 6     | 6   | 4     | 4       | 4        | 2       | 2      | 2   | 1     | 1     | 1     | 29    | 29      | 29    |
| Quercus pagoda          | cherrybark oak     | Tree           | 2     | 2     | 2   | 2     | 2       | 2        | 1       | 1      | 1   |       |       |       | 15    | 15      | 15    |
| Quercus phellos         | willow oak         | Tree           |       |       |     |       |         |          | 1       | 1      | 1   | 4     | 4     | 4     | 12    | 12      | 12    |
| Quercus rubra           | northern red oak   | Tree           |       |       |     |       |         | 6        |         |        |     |       |       |       |       |         | 6     |
| Quercus velutina        | black oak          | Tree           |       |       |     |       |         |          |         |        |     |       |       |       |       |         |       |
| Rhus                    | sumac              | Shrub          |       |       |     |       |         |          |         |        |     |       |       |       |       |         |       |
| Rhus copallinum         | flameleaf sumac    | Shrub          |       |       |     |       |         |          |         |        |     |       |       |       |       |         | 1     |
| Sambucus                | elderberry         | Shrub          |       |       |     |       |         |          |         |        |     |       |       |       |       |         | 2     |
| Ulmus                   | elm                | Tree           |       |       |     |       |         |          |         |        | 2   |       |       |       |       |         | 8     |
|                         |                    | Stem count     | 13    | 13    | 14  | 12    | 12      | 117      | 11      | 11     | 19  | 11    | 11    | 144   | 161   | 161     | 608   |
|                         |                    | size (ares)    |       | 1     |     |       | 1       |          |         | 1      |     |       | 1     |       |       | 14      |       |
|                         |                    | size (ACRES)   |       | 0.02  |     |       | 0.02    |          |         | 0.02   |     |       | 0.02  |       |       | 0.35    |       |
|                         |                    | Species count  |       | 4     | 5   | 5     | 5       | 11       | 5       | 5      | 6   | 5     | 5     | 8     | 7     | 7       | 21    |
|                         |                    | Stems per ACRE | 526   | 526   | 567 | 486   | 486     | 4,735    | 445     | 445    | 769 | 445   | 445   | 5,827 | 465   | 465     | 1,757 |

#### Color Coding for Table

Exceeds requirements by 10% Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteer species included in total

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes,

| _                       |                    |                |       |         |       |       |         |       | Anr   | ual Me  | ans   |       |         |     |       |         |     |
|-------------------------|--------------------|----------------|-------|---------|-------|-------|---------|-------|-------|---------|-------|-------|---------|-----|-------|---------|-----|
|                         |                    |                | M     | Y5 (201 | .9)   | M     | Y3 (201 | .7)   | M     | Y2 (201 | .6)   | M     | Y1 (201 | .5) | M     | YO (201 | .5) |
| Scientific Name         | Common Name        | Species Type   | PnoLS | P-all   | Т     | PnoLS | P-all   | Т     | PnoLS | P-all   | Т     | PnoLS | P-all   | т   | PnoLS | P-all   | т   |
| Acer negundo            | boxelder           | Tree           |       |         | 41    |       |         | 16    |       |         |       |       |         | 2   |       |         |     |
| Acer rubrum             | red maple          | Tree           |       |         |       |       |         | 4     |       |         | 30    |       |         | 10  |       |         |     |
| Ailanthus altissima     | tree of heaven     | Exotic         |       |         | 6     |       |         |       |       |         |       |       |         |     |       |         |     |
| Alnus serrulata         | hazel alder        | Shrub          | 8     | 8       | 8     | 10    | 10      | 11    | 15    | 15      | 15    | 26    | 26      | 26  | 27    | 27      | 27  |
| Betula nigra            | river birch        | Tree           | 19    | 19      | 19    | 21    | 21      | 23    | 20    | 20      | 20    | 27    | 27      | 27  | 28    | 28      | 28  |
| Cornus amomum           | silky dogwood      | Shrub          |       |         |       |       |         |       |       |         | 2     |       |         |     |       |         |     |
| Diospyros virginiana    | common persimmon   | Tree           |       |         | 3     |       |         |       |       |         |       |       |         |     |       |         |     |
| Fraxinus pennsylvanica  | green ash          | Tree           | 50    | 50      | 72    | 51    | 51      | 67    | 52    | 52      | 82    | 55    | 55      | 56  | 55    | 55      | 55  |
| Gleditsia triacanthos   | honeylocust        | Tree           |       |         | 1     |       |         | 1     |       |         |       |       |         |     |       |         |     |
| Ilex opaca              | American holly     | Tree           |       |         |       |       |         | 1     |       |         | 3     |       |         |     |       |         |     |
| Juglans nigra           | black walnut       | Tree           |       |         |       |       |         |       |       |         |       |       |         | 1   |       |         |     |
| Juniperus virginiana    | eastern redcedar   | Tree           |       |         |       |       |         | 3     |       |         |       |       |         |     |       |         |     |
| Liquidambar styraciflua | sweetgum           | Tree           |       |         | 185   |       |         | 129   |       |         | 30    |       |         | 10  |       |         |     |
| Liriodendron tulipifera | tuliptree          | Tree           |       |         | 201   |       |         | 74    |       |         | 71    |       |         | 32  |       |         |     |
| Nyssa sylvatica         | blackgum           | Tree           |       |         | 7     |       |         |       |       |         |       |       |         |     |       |         |     |
| Platanus occidentalis   | American sycamore  | Tree           | 47    | 47      | 205   | 49    | 49      | 235   | 50    | 50      | 115   | 56    | 56      | 101 | 56    | 56      | 56  |
| Quercus alba            | white oak          | Tree           |       |         |       |       |         |       |       |         |       |       |         |     |       |         |     |
| Quercus michauxii       | swamp chestnut oak | Tree           | 31    | 31      | 31    | 34    | 34      | 34    | 35    | 35      | 35    | 36    | 36      | 36  | 36    | 36      | 36  |
| Quercus pagoda          | cherrybark oak     | Tree           | 16    | 16      | 16    | 18    | 18      | 18    | 20    | 20      | 20    | 25    | 25      | 25  | 25    | 25      | 25  |
| Quercus phellos         | willow oak         | Tree           | 16    | 16      | 16    | 16    | 16      | 16    | 18    | 18      | 18    | 30    | 30      | 30  | 30    | 30      | 30  |
| Quercus rubra           | northern red oak   | Tree           |       |         |       |       |         | 6     |       |         | 40    |       |         | 10  |       |         |     |
| Quercus velutina        | black oak          | Tree           |       |         | 1     |       |         |       |       |         |       |       |         |     |       |         |     |
| Rhus                    | sumac              | Shrub          |       |         |       |       |         | 1     |       |         |       |       |         |     |       |         |     |
| Rhus copallinum         | flameleaf sumac    | Shrub          |       |         | 23    |       |         | 2     |       |         |       |       |         |     |       |         |     |
| Sambucus                | elderberry         | Shrub          |       |         |       |       |         |       |       |         |       |       |         |     |       |         |     |
| Ulmus                   | elm                | Tree           |       |         |       |       |         | 9     |       |         |       |       |         |     |       |         |     |
|                         |                    | Stem count     | 187   | 187     | 835   | 199   | 199     | 650   | 210   | 210     | 481   | 255   | 255     | 366 | 257   | 257     | 257 |
|                         |                    | size (ares)    |       | 16      |       |       | 16      |       |       | 16      |       |       | 16      |     |       | 16      |     |
|                         |                    | size (ACRES)   |       | 0.40    |       |       | 0.40    |       |       | 0.40    |       |       | 0.40    |     |       | 0.40    |     |
|                         |                    | Species count  | 7     | 7       | 16    | 7     | 7       | 18    | 7     | 7       | 13    | 7     | 7       | 13  | 7     | 7       | 7   |
|                         |                    | Stems per ACRE | 473   | 473     | 2,112 | 503   | 503     | 1,644 | 531   | 531     | 1,217 | 645   | 645     | 926 | 650   | 650     | 650 |

#### Color Coding for Table

Exceeds requirements by 10% Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Volunteer species included in total

PnoLS: Number of Planted stems excluding live stakes

P-all: Number of planted stems including live stakes,

APPENDIX 4. Morphological Summary Data and Plots

#### Table 10a. Baseline Stream Data Summary

Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 7 - 2021

| UT1                                              |       |                 |          |          |                                               |        |                |         |           |         |           |          |          |         |           |        |          |         |           |          |          |
|--------------------------------------------------|-------|-----------------|----------|----------|-----------------------------------------------|--------|----------------|---------|-----------|---------|-----------|----------|----------|---------|-----------|--------|----------|---------|-----------|----------|----------|
|                                                  |       | PRE-RESTORA     | TION CON | DITION   |                                               |        | RE             | FERENCE | REACH D   | ATA     |           |          |          |         | DES       | SIGN   |          |         | AS-BUILT/ | BASELIN  | i        |
| Parameter                                        | Gage  | UT1 - Reach 2   | UT1 - I  | Reach 5  | Onsite Reference<br>Reach -<br>UT1A - Reach 3 |        | Polecat<br>eek | Spencer | r Creek 1 | Spencer | r Creek 2 | UT To Ca | ne Creek | UT1 - F | Reach 2   | UT1 -  | Reach 5  | UT1 - F | leach 2   | UT1 - F  | Reach 5  |
|                                                  |       |                 | Min      | Max      | Min Max                                       | Min    | Max            | Min     | Max       | Min     | Max       | Min      | Max      | Min     | Max       | Min    | Max      | Min     | Max       | Min      | Max      |
| Dimension and Substrate - Riffle                 |       |                 |          |          |                                               |        |                |         |           |         |           |          |          |         |           |        |          |         |           |          |          |
| Bankfull Width (ft)                              |       | 6.5             | 13.9     | 16.0     | 11.1                                          | 5.3    | 10.9           | 10.7    | 11.2      | 6.3     | 9.3       | 11.5     | 12.3     | 10      | 0.2       | 1      | 2.8      | 10.2    | 10.4      | 11.9     | 13.6     |
| Floodprone Width (ft)                            |       | 10              | 20       | >50      | 25                                            | 25     | 65             | 60      | >114      | 14      | 125       | 3        | 1        | 22      | 51        | 28     | 64       | 60      | 100       | 2        | 00       |
| Bankfull Mean Depth                              |       | 0.8             | 1.5      | 4.3      | 0.7                                           | 1.0    | 1.1            | 1.6     | 1.8       | 0.8     | 1.0       | 0.8      | 1.0      |         | .8        |        | ).9      | 0.6     | 0.9       | 0.8      | 0.9      |
| Bankfull Max Depth                               |       | 1.4             | 1.9      | 5.2      | 1.0                                           | 1.4    | 1.7            | 2.1     | 2.6       | 1.0     | 1.2       | 1.2      | 1.6      | 1.0     | 1.2       | 1.2    | 1.5      | 1.1     | 1.4       | 1.3      | 1.6      |
| Bankfull Cross Sectional Area (ft <sup>2</sup> ) | N/A   | 5.2             | 24.6     | 59.0     | 7.4                                           | 5.4    | 12.4           | 17.8    | 19.7      | 6.6     | 8.7       | 8.9      | 12.2     | 7       | .9        | 1      | 2.0      | 6.2     | 9.0       | 9.1      | 11.9     |
| Width/Depth Ratio                                |       | 8.2             | 3.3      | 10.4     | 16.6                                          | 5.2    | 9.6            | 5.8     | 7.1       | 7.9     | 9.3       | 12.3     | 14.4     | 13      | 3.1       | 1      | 3.6      | 12.0    | 16.8      | 15.5     | 15.7     |
| Entrenchment Ratio                               |       | 1.5             | 1.2      | >3.6     | 2                                             | 3.2    | 8.3            | 5.5     | >10.2     | 1.7     | 4.3       | >2       | .5       | 2.2     | 5.0       | 2.2    | 5.0      | 5.9     | 9.6       | 14.7     | 16.8     |
| Bank Height Ratio                                |       | 2.3             | 1.0      | 2.0      | 1.0                                           | 1.0    | 1.1            | 1       | 1.0       | 1.0     | 1.0       |          |          | 1.0     | 1.0       | 1.0    | 1.0      | 1       | .0        | 1        | .0       |
| D50 (mm)                                         | 1     | 3.47            | 14       | 1.60     |                                               | -      |                | -       |           | -       |           |          | -        | -       |           | · ·    |          | Silt/   | Clay      | 0.       | 11       |
| Profile                                          |       |                 |          |          |                                               |        |                |         |           |         |           |          |          |         |           |        |          |         |           |          |          |
| Riffle Length (ft                                |       |                 | Τ.       |          |                                               |        |                |         |           | -       |           |          |          |         |           | 1      |          | 13.9    | 73.2      | 23.7     | 81.3     |
| Riffle Slope (ft/ft)                             |       |                 |          |          | N/A                                           | 0.0040 | 0.0470         | 0.0     | 0130      | 0.0184  | 0.0343    | 0.0188   | 0.0704   | 0.0148  | 0.0453    | 0.0118 | 0.0363   | 0.0078  | 0.0317    | 0.0090   | 0.0304   |
| Pool Length (ft                                  |       |                 |          |          |                                               |        |                | -       |           | -       |           |          |          | -       |           |        |          | 17.2    | 42.8      | 17.6     | 76.6     |
| Pool Max Depth (ft                               | N/A   | 2.4             | 2        | .5       | 1.6                                           | 1      | L.8            | 3       | 8.3       | 1.2     | 1.8       | 2.       | 6        | 0.9     | 3.2       | 1.1    | 3.9      | 1.6     | 3.7       | 2.0      | 4.9      |
| Pool Spacing (ft)                                |       |                 |          |          | N/A                                           | 34     | 52             |         | 71        | 9       | 46        | 27       | 73       | 13      | 67        | 17     | 84       | 31      | 78        | 35       | 103      |
| Pool Volume (ft <sup>3</sup>                     |       |                 |          |          |                                               |        |                |         |           | -       |           |          |          |         |           |        |          |         |           | -        |          |
| Pattern                                          |       |                 |          |          |                                               |        |                |         |           |         |           |          |          |         |           |        |          |         |           |          |          |
| Channel Beltwidth (ft                            |       | 12 20           | 48       | 157      | N/A                                           | 28     | 50             | 38      | 41        | 10      | 50        | 10       | 12       | 16      | 74        | 20     | 93       | 20      | 68        | 34       | 72       |
| Radius of Curvature (ft)                         |       | 6 18            | 40       | 86       | N/A                                           | 19     | 50             | 11      | 41        | 10      | 85        | 23       | 38       | 18      | 31        | 20     | 38       | 18      | 26        | 23       | 38       |
| Rc:Bankfull Width (ft/ft                         | N/A   | 0.8 2.3         | 1.6      | 10.9     | N/A                                           | 2.0    | 5.3            | 1.3     | 1.4       | 1.9     | 9.1       | 2.0      | 3.1      | 1.8     | 3.0       | 1.8    | 3.0      | 1.8     | 2.5       | 1.9      | 2.8      |
| Meander Length (ft)                              | N/A   | 27 45           | 176      | 260      | N/A                                           |        |                |         |           | 53      | 178       |          |          | 31      | 151       | 38     | 192      | 70      | 120       | 97       | 160      |
| Meander Width Ratio                              |       | 1.5 2.5         | 6.1      | 19.9     | N/A                                           | 3.0    | 5.3            | 3.4     | 3.6       | 1.6     | 5.4       | 8.3      | 8.9      | 1.6     | 7.3       | 1.6    | 7.3      | 2.0     | 6.5       | 2.9      | 5.3      |
| Substrate, Bed and Transport Parameters          | 1     |                 | 1 ***    |          | ,                                             |        |                |         |           |         |           |          |          |         |           |        |          |         | 0.0       |          |          |
| Ri%/Ru%/P%/G%/S%                                 | 4     |                 | 1        |          |                                               |        |                |         |           |         |           |          |          |         |           | r .    |          | -       |           | -        |          |
| SC%/Sa%/G%/C%/B%/Be%                             |       |                 |          |          |                                               |        |                |         |           |         |           |          |          |         |           |        |          | -       |           |          |          |
| 30/0/38/0/0/0/0/0/0/0/0/0/0/                     |       | 0.33/1.88/3.47/ |          | .2/14.6/ |                                               |        |                | -       |           | -       |           |          | -        | -       |           |        |          | sc/ s   |           | SC/SC    |          |
| d16/d35/d50/d84/d95/d100                         | N/A   | 45.0/117/256    |          | 4/>2048  |                                               | -      |                | -       |           | -       |           |          | -        | -       |           |        |          | 41.3/79 |           | 45.0/104 |          |
| Reach Shear Stress (Competency) lb/ft            | IN/A  | 0.43            | 1        | .26      |                                               |        |                | _       |           |         |           |          | -        | 0.      | 49        | 0      | .63      | 0.      | 38        | . 0      | 56       |
| Max part size (mm) mobilized at bankful          |       |                 |          |          |                                               |        |                | _       |           | -       |           |          | -        |         |           | -      |          | -       |           |          |          |
| Stream Power (Capacity) W/m                      |       |                 |          |          |                                               |        |                |         |           |         |           |          |          |         |           |        |          | -       |           |          |          |
| Additional Reach Parameters                      |       |                 |          |          |                                               |        |                |         |           | 1       |           |          |          |         |           |        |          |         |           |          |          |
|                                                  |       | 0.25            |          | .56      | 0.15                                          | 0      | .41            | 0       | .96       | 0.      | 27        | 0.3      | 20       | 0       | 25        |        | .56      |         | 25        | 0        | 56       |
| Drainage Area (SM)                               |       | <1%             |          | .56      |                                               |        |                |         | .96       |         |           | U<br>    |          |         | 25<br>1%  |        | 1%       |         | 25        |          | 50<br>1% |
| Watershed Impervious Cover Estimate (%)          |       | G4              |          | , G4     | <br>B3                                        |        | <br>E4         |         | E4        |         | 4         | C4/      |          |         | .4        |        | 1%<br>C4 | c       |           |          | .4       |
| Rosgen Classification<br>Bankfull Velocity (fps  |       | 2.7             | 1.7      | 5.7      | 4.9                                           | 2.2    | 3.5            | 4.9     | 5.4       | 5.0     | 5.6       | 3.       |          |         | .4<br>5-5 |        | .5-5     | 2.6     | 3.4       | 3.3      | 3.6      |
| Bankfull Discharge (cfs)                         |       | 14              |          | 29       | 4.9                                           |        | 3.5            |         | 3.4<br>97 |         | 3.0       | 4        |          |         | 5.0       |        | 6.0      | 17.0    | 30.9      | 30.3     | 42.9     |
| Q-NFF regression                                 |       | 14              | -        |          | 57                                            |        |                |         |           |         |           | 4        |          |         |           |        | 0.0      | 17.0    |           | 30.3     |          |
| Q-NFF regression<br>Q-USGS extrapolation         | N/A   |                 |          |          | 1                                             |        |                |         |           |         |           |          |          |         |           |        |          |         | -         | -        |          |
| Q-USGS extrapolation<br>Q-Mannings               | 11/74 |                 |          |          |                                               |        |                |         |           |         |           |          |          |         |           |        |          |         |           |          |          |
| Valley Length (ft)                               |       |                 | _        |          |                                               |        |                | -       |           | -       |           |          |          | - 9     |           |        | 232      | -       |           | -        |          |
| Channel Thalweg Length (ft)                      | 1     | 1,132           |          | 417      |                                               |        |                |         |           |         |           |          |          | -       | 114       |        | 488      | 1,1     |           |          | 535      |
| Sinuosity                                        |       | 1,132           |          | .24      | 1.04                                          | 1      | .40            | 2       | .32       | 1.00    | 1.30      | 1.4      |          | 1.20    | 1.30      | 1.20   | 1.30     | 1,1     |           |          | 22       |
| Water Surface Slope (ft/ft)                      |       |                 |          |          |                                               |        |                |         |           | 1.00    | 1.50      |          | -        | 1.20    |           |        | 1.50     |         | 111       |          | 122      |
| Bankfull Slope (ft/ft)                           |       | 0.0093 0.0190   | 0.0005   | 0.0130   | 0.0490                                        |        | 0120           |         | 0047      | 0.0190  | 0.0220    | 0.0      |          | 0.0070  | 0.0150    | 0.0054 | 0.0172   |         | 096       |          | 104      |
| Bankrull Slope (It/It                            |       | 0.0095 0.0190   | 0.0005   | 0.0130   | 0.0450                                        | 0.0    |                | 0.0     |           | 0.0190  | 0.0220    | 0.0.     |          | 0.0070  | 0.0130    | 0.0054 | 0.0172   | 0.0     |           | 0.0      |          |

(---): Data was not provided N/A: Not Applicable

<sup>1</sup>Entrenchment Ratio is the flood prone width divided by the bankfull width.

#### Table 10b. Baseline Stream Data Summary

Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 7 - 2021

|                                                    |      | PRE-RESTORAT    |          |         |                                               |        | pc             | FERENCE |           | ΛΤΛ     |           |          |          |        | DEG     | IGN    |         |        |           | /BASELIN | ie.       |
|----------------------------------------------------|------|-----------------|----------|---------|-----------------------------------------------|--------|----------------|---------|-----------|---------|-----------|----------|----------|--------|---------|--------|---------|--------|-----------|----------|-----------|
|                                                    |      | PRE-RESTORAT    | TON CONL | TION    | 0 1 0 (                                       |        | KE             | FERENCE | KEACH D   |         |           | 1        |          |        | DES     | IGN    |         |        | AS-DUILI, | DASELIN  |           |
| Parameter                                          | Gage | UT1A - Reach 1  | UT1A - I | Reach 4 | Onsite Reference<br>Reach -<br>UT1A - Reach 3 |        | Polecat<br>eek | Spencer | r Creek 1 | Spencer | r Creek 2 | UT To Ca | ne Creek | UT1A - | Reach 1 | UT1A - | Reach 4 | UT1A - | Reach 1   | UT1A -   | Reach 4   |
|                                                    |      |                 |          |         | Min Max                                       | Min    | Max            | Min     | Max       | Min     | Max       | Min      | Max      | Min    | Max     | Min    | Max     | Min    | Max       | Min      | Max       |
| Dimension and Substrate - Riffle                   |      |                 |          |         |                                               |        |                |         |           |         |           |          |          |        |         |        |         |        |           |          |           |
| Bankfull Width (ft)                                |      | 5.8             | 9.       | 3       | 11.1                                          | 5.3    | 10.9           | 10.7    | 11.2      | 6.3     | 9.3       | 11.5     | 12.3     | 8      | .0      | 8      | .2      | 8      | 0.1       | ٤        | 8.1       |
| Floodprone Width (ft)                              |      | 15              | >8       | 80      | 25                                            | 25     | 65             | 60      | >114      | 14      | 125       | 3        | 1        | 18     | 40      | 18     | 41      | 5      | 50        | 2        | 200       |
| Bankfull Mean Depth                                |      | 1.1             | 1.       | 0       | 0.7                                           | 1.0    | 1.1            | 1.6     | 1.8       | 0.8     | 1.0       | 0.8      | 1.0      | 0      | .6      | 0      | .6      | 0      | ).5       | C        | 0.6       |
| Bankfull Max Depth                                 |      | 1.4             | 1.       | 5       | 1.0                                           | 1.4    | 1.7            | 2.1     | 2.6       | 1       | 1.2       | 1.2      | 1.6      | 0.7    | 0.9     | 0.8    | 1.0     | 0      | ).9       | 1        | 1.8       |
| Bankfull Cross Sectional Area (ft <sup>2</sup> )   | N/A  | 6.3             | 9.       | 3       | 7.4                                           | 5.4    | 12.4           | 17.8    | 19.7      | 6.6     | 8.7       | 8.9      | 12.2     | 4      | .8      | 5      | .0      | 4      | .0        | 5        | 5.0       |
| Width/Depth Ratio                                  |      | 5.3             | 9.       | 0       | 16.6                                          | 5.2    | 9.6            | 5.8     | 7.1       | 7.9     | 9.3       | 12.3     | 14.4     | 1      | 3.4     | 13     | 8.6     | 1      | 5.9       | 1        | 3.2       |
| Entrenchment Ratio                                 |      | 2.6             | >8       | .6      | 2                                             | 3.2    | 8.3            | 5.5     | >10.2     | 1.7     | 4.3       | >2       | 2.5      | 2.2    | 5.0     | 2.2    | 5.0     | 6      | i.3       | 2        | 4.8       |
| Bank Height Ratio                                  |      | 1.7             | 1.       |         | 1.0                                           | 1.0    | 1.1            |         | 1.0       | 1.0     | 1.0       |          |          | 1.0    | 1.0     | 1.0    | 1.0     |        | .0        |          | 1.0       |
| D50 (mm)                                           | 1    | 4.31            | 5.0      |         |                                               |        | 1.1            |         |           |         | 1.0       |          | -        |        |         |        | 1.0     |        | .41       |          | 0.25      |
| Profile                                            |      |                 | 1        |         | 1                                             |        |                | I       |           |         |           | L        |          |        |         |        |         |        |           | °        | -         |
| Riffle Length (ft)                                 | 1    |                 |          | _       |                                               |        |                |         |           |         |           |          |          |        |         |        |         | 15.5   | 42.0      | 20.5     | 51.9      |
| Riffle Slope (ft/ft)                               |      |                 |          |         | N/A                                           | 0.0040 | 0.0470         |         | 0130      | 0.0184  | 0.0343    | 0.0188   | 0.0704   | 0.0148 | 0.0453  | 0.0212 | 0.0652  | 0.0077 | 42.0      | 0.0109   | 0.0449    |
| Pool Length (ft)                                   | 1    |                 |          |         | N/A                                           |        | 0.0470         |         |           | 0.0104  | 1 0.0343  | 0.0100   |          |        | 0.0433  |        | 0.0032  | 5.4    | 52.2      | 9.1      | 35.5      |
| Pool Max Depth (ft)                                | N/A  | 1.8             | 3.       |         | 1.6                                           |        | 1.8            |         | 3.3       | 1.2     | 1.8       |          | .6       | 0.7    | 2.4     | 0.7    | 2.5     | 1.6    | 32.2      | 1.4      | 3.1       |
|                                                    |      |                 |          |         | N/A                                           | 34     | 52             |         | 71        | 9       | 46        | 27       | 73       | 10     | 53      | 11     | 54      | 20     | 85        | 45       | 82        |
| Pool Spacing (ft)                                  |      |                 |          |         | N/A                                           |        | 52             |         |           | -       | 46        | - 27     |          | 10 -   |         |        |         |        | 85        |          | 82        |
| Pool Volume (ft <sup>3</sup> )                     |      |                 |          | -       |                                               |        |                |         |           | -       |           | -        |          | -      |         | -      |         |        |           |          |           |
| attern                                             |      | -               |          |         |                                               | 1      |                |         |           |         |           | r        |          | 1      | 1       | 1      | 1       |        |           |          | _         |
| Channel Beltwidth (ft)                             |      | 30 35           | N/A      | N/A     | N/A                                           | 28     | 50             | 38      | 41        | 10      | 50        |          | 02       | 13     | 58      | 13     | 60      | 24     | 60        | 35       | 55        |
| Radius of Curvature (ft)                           |      | 12 57           | N/A      | N/A     | N/A                                           | 19     | 50             | 11      | 15        | 12      | 85        | 23       | 38       | 14     | 24      | 15     | 25      | 14     | 23        | 15       | 23        |
| Rc:Bankfull Width (ft/ft)                          | N/A  | 1.5 7.2         | N/A      | N/A     | N/A                                           | 2.0    | 5.3            | 1.3     | 1.4       | 1.9     | 9.1       | 2.0      | 3.1      | 1.8    | 3.0     | 1.8    | 3.0     | 1.8    | 2.9       | 1.9      | 2.8       |
| Meander Length (ft)                                |      | 89 104          | N/A      | N/A     | N/A                                           |        |                |         |           | 53      | 178       |          |          | 24     | 120     | 25     | 123     | 70     | 112       | 96       | 117       |
| Meander Width Ratio                                |      | 3.8 4.4         | N/A      | N/A     | N/A                                           | 3.0    | 5.3            | 3.4     | 3.6       | 1.6     | 5.4       | 8.3      | 8.9      | 1.6    | 7.3     | 1.6    | 7.3     | 3.0    | 7.5       | 4.3      | 6.8       |
| ubstrate, Bed and Transport Parameters             |      |                 |          |         |                                               | -      |                |         |           |         |           |          |          | -      |         | -      |         |        |           |          |           |
| Ri%/Ru%/P%/G%/S%                                   |      |                 |          | -       |                                               | -      |                | -       |           | -       |           | -        |          | -      |         | -      |         | -      |           | -        |           |
| SC%/Sa%/G%/C%/B%/Be%                               |      |                 |          | -       |                                               | -      |                | -       |           | -       |           | -        |          | -      |         | -      |         | -      |           | -        |           |
| d16/d35/d50/d84/d95/d100                           |      | 0.15/2.18/4.31/ | 0.45/2.7 |         |                                               |        |                |         |           |         |           |          |          | -      |         | -      |         |        | 2/1.41/   |          | C/0.25/   |
| 410/455/450/40 1/455/4100                          | N/A  | 16/139/256      | 67.7/12  |         |                                               |        |                |         |           |         |           |          |          |        |         |        |         |        | .0/128.0  |          | 5.9/180.0 |
| Reach Shear Stress (Competency) lb/ft <sup>2</sup> |      | 0.50            | 1.3      | 76      |                                               |        |                |         |           | -       |           | -        |          | 0.     | 48      | 0.     | 54      | 0.     | .38       | 0        | 0.49      |
| Max part size (mm) mobilized at bankful            |      |                 |          | -       |                                               |        |                | -       |           | -       |           | -        |          | -      |         | -      | -       | -      |           | -        |           |
| Stream Power (Capacity) W/m <sup>2</sup>           |      |                 |          |         |                                               | -      |                | -       |           | -       |           | -        |          | -      |         | -      |         | -      |           | · ·      |           |
| dditional Reach Parameters                         |      |                 |          |         |                                               |        |                |         |           |         |           |          |          |        |         |        |         |        |           |          |           |
| Drainage Area (SM)                                 |      | 0.12            | 0.:      | 16      | 0.15                                          | 0      | .41            | 0       | .96       | 0.      | .37       | 0.       | 29       | 0.     | 12      | 0.     | 16      | 0.     | .12       | 0        | 0.16      |
| Watershed Impervious Cover Estimate (%)            | 1    | <1%             | <1       | %       |                                               |        |                |         |           | -       |           | -        |          | <      | 1%      | <      | 1%      | <      | 1%        | <        | :1%       |
| Rosgen Classification                              | 1    | E4              | E        | 4       | B3                                            | 1      | E4             | E       | E4        | E       | E4        | C4       | /E4      | 0      | 4       | 0      | 4       | (      | 24        | ł        | C4        |
| Bankfull Velocity (fps)                            | 1    | 3.3             | 5.       | 2       | 4.9                                           | 2.2    | 3.5            | 4.9     | 5.4       | 5.0     | 5.6       | 3        | .8       | 2.     | 5-5     | 2.     | 5-5     | 2      | 6         | 3        | 3.0       |
| Bankfull Discharge (cfs)                           | 1    | 21              | 5        | 0       | 37                                            |        | 20             | 9       | 97        | 3       | 35        | 4        | 0        | 14     | 4.0     | 17     | ·.0     | 1      | 5.9       | 1        | .5.0      |
| Q-NFF regression                                   | 1    |                 |          | -       |                                               | -      |                | -       |           | -       |           | -        |          | -      |         | -      |         | -      |           |          |           |
| Q-USGS extrapolation                               | N/A  |                 |          |         |                                               | -      |                | -       |           | -       |           | -        |          | -      |         | -      |         | -      |           |          |           |
| Q-Mannings                                         | 1    |                 |          | -       |                                               | -      |                | -       |           | -       |           | -        |          | -      |         | -      |         | -      |           |          |           |
| Valley Length (ft)                                 | 1    |                 |          | -       |                                               |        |                |         |           | -       |           | -        |          | 6      | 73      | 5      | 30      | -      |           |          |           |
| Channel Thalweg Length (ft)                        | 1    | 770             | 46       | 51      |                                               |        |                |         |           | -       |           | -        |          | 8      | 49      | 6      | 50      | 8      | 57        | 6        | 566       |
| Sinuosity                                          | 1    | 1.12            | 1.0      | )3      | 1.04                                          | 1      | .40            | 2       | .32       | 1.00    | 1.30      | 1.       | 40       | 1.20   | 1.30    | 1.20   | 1.30    | 1.     | .21       | 1        | .25       |
| Water Surface Slope (ft/ft) <sup>2</sup>           | 1    |                 |          | -       |                                               |        |                |         |           | -       |           | -        |          | -      |         | -      |         | 0.0    | 126       | Ν        | N/A       |
| Bankfull Slope (ft/ft)                             | 1    | 0.0095          | 0.03     | 150     | 0.0490                                        | 0.0    | 0120           | 0.0     | 047       | 0.0190  | 0.0220    | 0.0      | 150      | 0.0103 | 0.0175  | 0.0141 | 0.0153  | 0.0    | 137       | 0.0      | 0129      |

(---): Data was not provided N/A: Not Applicable

<sup>1</sup>Entrenchment Ratio is the flood prone width divided by the bankfull width.

#### Table 10c. Baseline Stream Data Summary

Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 7 - 2021

UT1B PRE-AS-BUILT/ REFERENCE REACH DATA DESIGN RESTORATION BASELINE **Onsite Reference** UT to Polecat Parameter Gage UT1B Reach -Spencer Creek 1 Spencer Creek 2 UT To Cane Creek Creek UT1A - Reach 3 Min Max Dimension and Substrate - Riffle Bankfull Width (ft) 4.9 11.1 6.3 9.3 11.5 12.3 7.3 7.7 5.3 10.9 10.7 11.2 Floodprone Width (ft) 16 70 36 25 25 65 60 >114 14 125 31 37 Bankfull Mean Depth 1.1 0.7 1.0 1.1 1.6 1.8 0.8 1.0 0.8 1.0 0.6 0.5 Bankfull Max Depth 1.9 1.0 1.4 1.7 2.1 2.6 1.0 1.2 1.2 1.6 0.7 0.9 07 7.4 5.4 12.4 8.7 8.9 Bankfull Cross Sectional Area (ft<sup>2</sup>) 5.4 17.8 19.7 6.6 12.2 5.2 3.5 N/A 14.4 Width/Depth Ratio 4.4 16.6 5.2 9.6 5.8 7.1 7.9 9.3 12.3 12.6 17.0 7.5 2.3 3.2 8.3 >10.2 4.3 9.1 Entrenchment Ratio<sup>1</sup> 5.5 1.7 >2.5 2.2 5.0 1.6 1.0 1.0 1.1 1.0 1.0 1.0 1.0 1.0 Bank Height Ratio<sup>2</sup> 1.0 ---D50 (mm) Silt/Clay --------------------Profile Riffle Length (ft) 24.4 ----12.1 Riffle Slope (ft/ft) N/A 0.0040 0.0470 0.0130 0.0184 0.0343 0.0188 0.0704 0.0222 0.0680 0.0219 0.0425 Pool Length (ft) 11.9 30.9 N/A Pool Max Depth (ft) 2.5 1.6 1.8 3.3 1.2 1.8 2.6 0.7 2.4 1.7 2.5 Pool Spacing (ft) ----N/A 34 52 71 9 46 27 73 9 48 30 45 Pool Volume (ft<sup>3</sup>) -------Pattern Channel Beltwidth (ft) N/A N/A N/A 28 38 41 10 50 102 12 53 25 40 50 Radius of Curvature (ft) N/A N/A N/A 19 50 11 12 85 13 22 14 20 15 23 38 Rc:Bankfull Width (ft/ft) N/A N/A N/A N/A 2.0 5.3 1.9 9.1 2.0 3.1 1.8 3.0 2.6 1.3 1.4 1.8 Meander Length (ft N/A 53 22 N/A N/A 178 110 60 72 Meander Width Ratio N/A N/A N/A 3.0 3.4 3.6 8.9 7.3 5.3 1.6 5.4 8.3 1.6 3.2 5.2 Substrate, Bed and Transport Parameters Ri%/Ru%/P%/G%/S% -------------------------------SC%/Sa%/G%/C%/B%/Be% ---------------------------SC/SC/SC/ d16/d35/d50/d84/d95/d100 ----------------------------19.5/40.2/90.0 N/A Reach Shear Stress (Competency) lb/ft<sup>2</sup> ---------------0.21 Max part size (mm) mobilized at bankfull Stream Power (Capacity) W/m<sup>2</sup> --------------------------------Additional Reach Parameters 0.10 0.15 0.41 0.96 0.37 0.29 0.10 0.10 Drainage Area (SM) <1% <1% <1% Watershed Impervious Cover Estimate (%) E4 B3 E4 E4 E4 C4/E4 C4 C4 Rosgen Classification 4.9 5.4 5.0 5.6 Bankfull Velocity (fps) 4.6 4.9 2.2 3.5 3.8 1.5-4 1.9 Bankfull Discharge (cfs) 37 6.6 25 40 11 20 97 35 Q-NFF regression Q-USGS extrapolation N/A ----------------------------Q-Mannings ---Valley Length (ft) 199 Channel Thalweg Length (ft) 243 219 232 Sinuosity 1.06 1.04 1.40 2.32 1.00 1.30 1.40 1.20 1.30 1.34 0.0095 Water Surface Slope (ft/ft)<sup>2</sup> Bankfull Slope (ft/ft) 0.0200 0.0490 0.0120 0.0047 0.0150 0.0181 0.0190 0.0220 0.0100 0.0200

(---): Data was not provided N/A: Not Applicable

<sup>1</sup>Entrenchment Ratio is the flood prone width divided by the bankfull width.

#### Table 10d. Baseline Stream Data Summary

Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 7 - 2021

UT2 PRE-AS-BUILT/ REFERENCE REACH DATA DESIGN RESTORATION BASELINE **Onsite Reference** UT to Polecat Parameter Gage Reach -Spencer Creek 1 Spencer Creek 2 UT To Cane Creek Creek UT1A - Reach 3 Min Max Dimension and Substrate - Riffle Bankfull Width (ft) 6.2 9.6 11.1 6.3 9.3 11.5 12.3 6.6 6.7 5.3 10.9 10.7 11.2 Floodprone Width (ft) 15 50 >20 25 25 65 60 >114 14 125 31 33 Bankfull Mean Depth 0.6 1.1 0.7 1.0 1.1 1.6 1.8 0.8 1.0 0.8 1.0 0.5 0.5 Bankfull Max Depth 1.0 2.0 1.0 1.4 1.7 2.1 2.6 1.0 1.2 1.2 1.6 0.6 0.8 0.7 7.0 7.4 5.4 12.4 8.7 8.9 Bankfull Cross Sectional Area (ft<sup>2</sup>) N/A 5.2 17.8 19.7 6.6 12.2 3.4 3.4 14.4 Width/Depth Ratio 5.5 15.5 16.6 5.2 9.6 5.8 7.1 7.9 9.3 12.3 12.8 12.9 2.3 3.2 8.3 >10.2 4.3 7.5 Entrenchment Ratio<sup>1</sup> 5.5 1.7 >2.5 2.2 5.0 >2.4 1.0 2.1 1.0 1.0 1.1 1.0 1.0 1.0 1.0 1.0 Bank Height Ratio<sup>2</sup> 1.0 ------D50 (mm) Silt/Clay 2.11 ----------------Profile Riffle Length (ft) 51.7 13.9 ----Riffle Slope (ft/ft) N/A 0.0040 0.0470 0.0130 0.0184 0.0343 0.0188 0.0704 0.0179 0.0549 0.0146 0.0525 Pool Length (ft) 10.0 28.4 N/A Pool Max Depth (ft) 1.4 1.6 1.8 3.3 1.2 1.8 2.6 0.6 2.1 1.0 2.4 Pool Spacing (ft) ----N/A 34 52 71 9 46 27 73 9 44 25 66 Pool Volume (ft<sup>3</sup>) -------Pattern Channel Beltwidth (ft) 32 54 N/A 28 38 41 10 50 102 48 19 50 50 11 Radius of Curvature (ft) 12 43 N/A 19 50 11 12 85 12 20 12 20 15 23 38 Rc:Bankfull Width (ft/ft) N/A 1.5 5.4 N/A 2.0 1.9 9.1 2.0 3.1 1.8 3.0 3.0 5.3 1.3 1.4 1.8 Meander Length (ft N/A 53 20 102 103 178 99 58 98 Meander Width Ratio N/A 3.0 3.4 3.6 8.9 7.5 4.1 6.8 5.3 1.6 5.4 8.3 1.6 7.3 2.8 Substrate, Bed and Transport Parameters Ri%/Ru%/P%/G%/S% -------------------------------SC%/Sa%/G%/C%/B%/Be% -----------------------0.2/0.68/2.11/ SC/SC/SC/ d16/d35/d50/d84/d95/d100 ------------------------20.7/98.3/256 30.2/64.0/128.0 N/A Reach Shear Stress (Competency) lb/ft<sup>2</sup> ---------------0.64 Max part size (mm) mobilized at bankfull Stream Power (Capacity) W/m<sup>2</sup> -------------------------------Additional Reach Parameters 0.09 0.15 0.41 0.96 0.37 0.29 0.09 0.09 Drainage Area (SM) <1% <1% <1% Watershed Impervious Cover Estimate (%) E4 B3 E4 E4 E4 C4/E4 C4 Rosgen Classification C4 3.0 5.1 4.9 5.4 5.0 5.6 Bankfull Velocity (fps) 4.9 2.2 3.5 3.8 2.5-5 3.4 Bankfull Discharge (cfs) 37 11.0 40 11.5 23 20 97 35 Q-NFF regression Q-USGS extrapolation N/A ----------------------------Q-Mannings Valley Length (ft) 905 Channel Thalweg Length (ft) 1,028 1,023 1,032 Sinuosity 1.06 1.04 1.40 2.32 1.00 1.30 1.40 1.20 1.30 1.16 0.0207 Water Surface Slope (ft/ft)<sup>2</sup> Bankfull Slope (ft/ft) 0.0130 0.0220 0.0490 0.0120 0.0047 0.0190 0.0220 0.0150 0.0121 0.0231 0.0195

(---): Data was not provided N/A: Not Applicable

<sup>1</sup>Entrenchment Ratio is the flood prone width divided by the bankfull width.

### Table 11. Morphology and Hydraulic Summary (Dimensional Parameters - Cross Section) Agony Acres Mitigation Site (DMS Project No. 95716)

Monitoring Year 7 - 2021

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                                             |                                                                                                                                                 |                                                                                                                                                                                            |                                                                                                                                                                          |                                                                                                                                                                    |                                                                                                                                                                     |                                                                                                                                                        |                                                                                                                                              | UT1 R                                                                                                                                              | each 2                                                                                                                                                                                                         |                                                                                                                                                                                          |                                                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                 |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                   |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                         |                                                                                                                                                               |                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                   | Cro                                                                                                                                                                                | ss Secti                                                                                                                                              | on 1 (Ri                                                                                                                                                                    | ffle)                                                                                                                                           |                                                                                                                                                                                            |                                                                                                                                                                          | Cro                                                                                                                                                                | ss Secti                                                                                                                                                            | on 2 (P                                                                                                                                                | ool)                                                                                                                                         |                                                                                                                                                    |                                                                                                                                                                                                                | Cros                                                                                                                                                                                     | s Sectio                                                                                                                                                                     | on 3 (Ri                                                                                                                                                       | ffle)                                                                                                                                                                                           |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                   | Cro                                                                                                                                                                      | ss Secti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | on 4 (P                                                                                                                                                 | ool)                                                                                                                                                          |                                                                                                                                                                             |
| Dimension and Substrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Base                                                                                                                                              | MY1                                                                                                                                                                                | MY2                                                                                                                                                   | MY3                                                                                                                                                                         | MY5                                                                                                                                             | MY7                                                                                                                                                                                        | Base                                                                                                                                                                     | MY1                                                                                                                                                                | MY2                                                                                                                                                                 | MY3                                                                                                                                                    | MY5                                                                                                                                          | MY7                                                                                                                                                | Base                                                                                                                                                                                                           | MY1                                                                                                                                                                                      | MY2                                                                                                                                                                          | MY3                                                                                                                                                            | MY5                                                                                                                                                                                             | MY7                                                                                                                                                                                              | Base                                                                                                                                                                                                                                              | MY1                                                                                                                                                                      | MY2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MY3                                                                                                                                                     | MY5                                                                                                                                                           | MY7                                                                                                                                                                         |
| Bankfull Elevation (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 651.7                                                                                                                                             | 651.7                                                                                                                                                                              | 651.7                                                                                                                                                 | 651.7                                                                                                                                                                       | 651.8                                                                                                                                           | 651.7                                                                                                                                                                                      | 651.0                                                                                                                                                                    | 651.0                                                                                                                                                              | 651.0                                                                                                                                                               | 651.0                                                                                                                                                  | 651.2                                                                                                                                        | 651.3                                                                                                                                              | 644.0                                                                                                                                                                                                          | 644.0                                                                                                                                                                                    | 644.0                                                                                                                                                                        | 644.0                                                                                                                                                          | 644.0                                                                                                                                                                                           | 644.1                                                                                                                                                                                            | 643.6                                                                                                                                                                                                                                             | 643.6                                                                                                                                                                    | 643.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 643.6                                                                                                                                                   | 643.6                                                                                                                                                         | 643.7                                                                                                                                                                       |
| Low Bank Elevation (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 651.7                                                                                                                                             | 651.7                                                                                                                                                                              | 651.7                                                                                                                                                 | 651.7                                                                                                                                                                       | 651.8                                                                                                                                           | 651.7                                                                                                                                                                                      | 651.0                                                                                                                                                                    | 651.0                                                                                                                                                              | 651.0                                                                                                                                                               | 651.0                                                                                                                                                  | 651.2                                                                                                                                        | 651.3                                                                                                                                              | 644.0                                                                                                                                                                                                          | 644.0                                                                                                                                                                                    | 644.0                                                                                                                                                                        | 644.0                                                                                                                                                          | 644.0                                                                                                                                                                                           | 644.1                                                                                                                                                                                            | 643.6                                                                                                                                                                                                                                             | 643.6                                                                                                                                                                    | 643.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 643.6                                                                                                                                                   | 643.6                                                                                                                                                         | 643.7                                                                                                                                                                       |
| Bankfull Width (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.4                                                                                                                                              | 9.9                                                                                                                                                                                | 10.5                                                                                                                                                  | 10.9                                                                                                                                                                        | 12.0                                                                                                                                            | 9.4                                                                                                                                                                                        | 9.6                                                                                                                                                                      | 9.3                                                                                                                                                                | 9.3                                                                                                                                                                 | 8.9                                                                                                                                                    | 10.0                                                                                                                                         | 10.6                                                                                                                                               | 10.6                                                                                                                                                                                                           | 10.2                                                                                                                                                                                     | 9.7                                                                                                                                                                          | 9.2                                                                                                                                                            | 9.7                                                                                                                                                                                             | 10.1                                                                                                                                                                                             | 13.5                                                                                                                                                                                                                                              | 13.7                                                                                                                                                                     | 12.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.3                                                                                                                                                    | 12.8                                                                                                                                                          | 14.3                                                                                                                                                                        |
| Floodprone Width (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100                                                                                                                                               | 100                                                                                                                                                                                | 100                                                                                                                                                   | 100                                                                                                                                                                         | 100                                                                                                                                             | 100                                                                                                                                                                                        | N/A                                                                                                                                                                      | N/A                                                                                                                                                                | N/A                                                                                                                                                                 | N/A                                                                                                                                                    | N/A                                                                                                                                          | N/A                                                                                                                                                | 60                                                                                                                                                                                                             | 60                                                                                                                                                                                       | 60                                                                                                                                                                           | 60                                                                                                                                                             | 60                                                                                                                                                                                              | 60                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                               | N/A                                                                                                                                                                      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                     | N/A                                                                                                                                                           | N/A                                                                                                                                                                         |
| Bankfull Mean Depth (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.9                                                                                                                                               | 0.8                                                                                                                                                                                | 0.7                                                                                                                                                   | 0.7                                                                                                                                                                         | 0.7                                                                                                                                             | 0.7                                                                                                                                                                                        | 1.2                                                                                                                                                                      | 1.1                                                                                                                                                                | 1.2                                                                                                                                                                 | 1.2                                                                                                                                                    | 1.2                                                                                                                                          | 1.3                                                                                                                                                | 0.6                                                                                                                                                                                                            | 0.6                                                                                                                                                                                      | 0.5                                                                                                                                                                          | 0.5                                                                                                                                                            | 0.6                                                                                                                                                                                             | 0.6                                                                                                                                                                                              | 1.1                                                                                                                                                                                                                                               | 1.0                                                                                                                                                                      | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0                                                                                                                                                     | 1.0                                                                                                                                                           | 0.9                                                                                                                                                                         |
| Bankfull Max Depth (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.4                                                                                                                                               | 1.4                                                                                                                                                                                | 1.4                                                                                                                                                   | 1.4                                                                                                                                                                         | 1.5                                                                                                                                             | 1.4                                                                                                                                                                                        | 2.1                                                                                                                                                                      | 1.9                                                                                                                                                                | 2.0                                                                                                                                                                 | 1.9                                                                                                                                                    | 2.2                                                                                                                                          | 2.1                                                                                                                                                | 1.1                                                                                                                                                                                                            | 1.1                                                                                                                                                                                      | 1.1                                                                                                                                                                          | 1.0                                                                                                                                                            | 1.1                                                                                                                                                                                             | 1.1                                                                                                                                                                                              | 1.9                                                                                                                                                                                                                                               | 1.8                                                                                                                                                                      | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.9                                                                                                                                                     | 2.0                                                                                                                                                           | 2.0                                                                                                                                                                         |
| Bankfull Cross Sectional Area (ft <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.0                                                                                                                                               | 8.0                                                                                                                                                                                | 7.8                                                                                                                                                   | 7.9                                                                                                                                                                         | 8.7                                                                                                                                             | 6.7                                                                                                                                                                                        | 11.6                                                                                                                                                                     | 10.4                                                                                                                                                               | 11.2                                                                                                                                                                | 10.3                                                                                                                                                   | 11.9                                                                                                                                         | 13.3                                                                                                                                               | 6.2                                                                                                                                                                                                            | 6.2                                                                                                                                                                                      | 5.3                                                                                                                                                                          | 4.9                                                                                                                                                            | 6.2                                                                                                                                                                                             | 6.1                                                                                                                                                                                              | 14.7                                                                                                                                                                                                                                              | 14.2                                                                                                                                                                     | 13.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.6                                                                                                                                                    | 12.4                                                                                                                                                          | 12.7                                                                                                                                                                        |
| Bankfull Width/Depth Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12.0                                                                                                                                              | 12.2                                                                                                                                                                               | 14.2                                                                                                                                                  | 15.1                                                                                                                                                                        | 16.5                                                                                                                                            | 13.2                                                                                                                                                                                       | 7.9                                                                                                                                                                      | 8.3                                                                                                                                                                | 7.7                                                                                                                                                                 | 7.6                                                                                                                                                    | 8.3                                                                                                                                          | 8.5                                                                                                                                                | 18.2                                                                                                                                                                                                           | 16.7                                                                                                                                                                                     | 17.7                                                                                                                                                                         | 17.5                                                                                                                                                           | 15.1                                                                                                                                                                                            | 16.9                                                                                                                                                                                             | 12.4                                                                                                                                                                                                                                              | 13.2                                                                                                                                                                     | 12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13.1                                                                                                                                                    | 13.2                                                                                                                                                          | 16.2                                                                                                                                                                        |
| Entrenchment Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.6                                                                                                                                               | 10.1                                                                                                                                                                               | 9.5                                                                                                                                                   | 9.2                                                                                                                                                                         | 8.4                                                                                                                                             | 10.6                                                                                                                                                                                       | N/A                                                                                                                                                                      | N/A                                                                                                                                                                | N/A                                                                                                                                                                 | N/A                                                                                                                                                    | N/A                                                                                                                                          | N/A                                                                                                                                                | 5.6                                                                                                                                                                                                            | 5.9                                                                                                                                                                                      | 6.2                                                                                                                                                                          | 6.5                                                                                                                                                            | 6.2                                                                                                                                                                                             | 5.9                                                                                                                                                                                              | N/A                                                                                                                                                                                                                                               | N/A                                                                                                                                                                      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                     | N/A                                                                                                                                                           | N/A                                                                                                                                                                         |
| Bankfull Bank Height Ratio <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0                                                                                                                                               | 1.0                                                                                                                                                                                | 1.0                                                                                                                                                   | 1.0                                                                                                                                                                         | <1.0                                                                                                                                            | <1.0                                                                                                                                                                                       | 1.0                                                                                                                                                                      | 1.0                                                                                                                                                                | 1.0                                                                                                                                                                 | 1.0                                                                                                                                                    | 1.0                                                                                                                                          | 1.0                                                                                                                                                | 1.0                                                                                                                                                                                                            | 1.0                                                                                                                                                                                      | 1.0                                                                                                                                                                          | 1.0                                                                                                                                                            | 1.0                                                                                                                                                                                             | 1.0                                                                                                                                                                                              | 1.0                                                                                                                                                                                                                                               | 1.0                                                                                                                                                                      | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0                                                                                                                                                     | 1.0                                                                                                                                                           | 1.0                                                                                                                                                                         |
| d50 (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18.0                                                                                                                                              | 64.0                                                                                                                                                                               | 10.4                                                                                                                                                  | 27.2                                                                                                                                                                        | 56.1                                                                                                                                            | 64.0                                                                                                                                                                                       | N/A                                                                                                                                                                      | N/A                                                                                                                                                                | N/A                                                                                                                                                                 | N/A                                                                                                                                                    | N/A                                                                                                                                          | N/A                                                                                                                                                | 13.3                                                                                                                                                                                                           | 46.6                                                                                                                                                                                     | 22.6                                                                                                                                                                         | 23.0                                                                                                                                                           | 22.6                                                                                                                                                                                            | 56.9                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                               | N/A                                                                                                                                                                      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                     | N/A                                                                                                                                                           | N/A                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                                             |                                                                                                                                                 |                                                                                                                                                                                            |                                                                                                                                                                          |                                                                                                                                                                    |                                                                                                                                                                     |                                                                                                                                                        |                                                                                                                                              | UT1 R                                                                                                                                              | each 5                                                                                                                                                                                                         |                                                                                                                                                                                          |                                                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                 |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                   |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                         |                                                                                                                                                               |                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                   | Cro                                                                                                                                                                                | ss Secti                                                                                                                                              | on 5 (P                                                                                                                                                                     | ool)                                                                                                                                            |                                                                                                                                                                                            |                                                                                                                                                                          | Cros                                                                                                                                                               | s Secti                                                                                                                                                             | on 6 (Ri                                                                                                                                               | ffle)                                                                                                                                        |                                                                                                                                                    |                                                                                                                                                                                                                | Cros                                                                                                                                                                                     | s Sectio                                                                                                                                                                     | on 7 (Ri                                                                                                                                                       | ffle)                                                                                                                                                                                           |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                   | Cro                                                                                                                                                                      | ss Secti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | on 8 (P                                                                                                                                                 | ool)                                                                                                                                                          |                                                                                                                                                                             |
| Dimension and Substrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Base                                                                                                                                              | MY1                                                                                                                                                                                | MY2                                                                                                                                                   | MY3                                                                                                                                                                         | MY5                                                                                                                                             | MY7                                                                                                                                                                                        | Base                                                                                                                                                                     | MY1                                                                                                                                                                | MY2                                                                                                                                                                 | MY3                                                                                                                                                    | MY5                                                                                                                                          | MY7                                                                                                                                                | Base                                                                                                                                                                                                           | MY1                                                                                                                                                                                      | MY2                                                                                                                                                                          | MY3                                                                                                                                                            | MY5                                                                                                                                                                                             | MY7                                                                                                                                                                                              | Base                                                                                                                                                                                                                                              | MY1                                                                                                                                                                      | MY2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MY3                                                                                                                                                     | MY5                                                                                                                                                           | MY7                                                                                                                                                                         |
| Bankfull Elevation (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 610.4                                                                                                                                             | 610.4                                                                                                                                                                              | 610.4                                                                                                                                                 | 610.4                                                                                                                                                                       | 610.3                                                                                                                                           | 610.4                                                                                                                                                                                      | 610.0                                                                                                                                                                    | 610.0                                                                                                                                                              | 610.0                                                                                                                                                               | 610.0                                                                                                                                                  | 610.0                                                                                                                                        | 610.1                                                                                                                                              | 600.9                                                                                                                                                                                                          | 600.9                                                                                                                                                                                    | 600.9                                                                                                                                                                        | 600.9                                                                                                                                                          | 600.8                                                                                                                                                                                           | 600.9                                                                                                                                                                                            | 600.6                                                                                                                                                                                                                                             | 600.6                                                                                                                                                                    | 600.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 600.6                                                                                                                                                   | 600.5                                                                                                                                                         | 600.6                                                                                                                                                                       |
| Low Bank Elevation (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 610.4                                                                                                                                             | 610.4                                                                                                                                                                              | 610.4                                                                                                                                                 | 610.4                                                                                                                                                                       | 610.3                                                                                                                                           | 610.4                                                                                                                                                                                      | 610.0                                                                                                                                                                    | 610.0                                                                                                                                                              | 610.0                                                                                                                                                               | 610.0                                                                                                                                                  | 610.0                                                                                                                                        | 610.1                                                                                                                                              | 600.9                                                                                                                                                                                                          | 600.9                                                                                                                                                                                    | 600.9                                                                                                                                                                        | 600.9                                                                                                                                                          | 600.8                                                                                                                                                                                           | 600.9                                                                                                                                                                                            | 600.6                                                                                                                                                                                                                                             | 600.6                                                                                                                                                                    | 600.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 600.6                                                                                                                                                   | 600.5                                                                                                                                                         | 600.6                                                                                                                                                                       |
| Bankfull Width (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15.9                                                                                                                                              | 16.5                                                                                                                                                                               | 16.7                                                                                                                                                  | 17.1                                                                                                                                                                        | 14.4                                                                                                                                            | 15.2                                                                                                                                                                                       | 15.3                                                                                                                                                                     | 15.2                                                                                                                                                               | 16.0                                                                                                                                                                | 15.1                                                                                                                                                   | 15.3                                                                                                                                         | 14.4                                                                                                                                               | 11.9                                                                                                                                                                                                           | 11.9                                                                                                                                                                                     | 11.8                                                                                                                                                                         | 12.0                                                                                                                                                           | 10.9                                                                                                                                                                                            | 11.7                                                                                                                                                                                             | 15.2                                                                                                                                                                                                                                              | 15.7                                                                                                                                                                     | 16.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16.1                                                                                                                                                    | 14.3                                                                                                                                                          | 14.4                                                                                                                                                                        |
| Floodprone Width (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A                                                                                                                                               | N/A                                                                                                                                                                                | N/A                                                                                                                                                   | N/A                                                                                                                                                                         | N/A                                                                                                                                             | N/A                                                                                                                                                                                        | 200                                                                                                                                                                      | 200                                                                                                                                                                | 200                                                                                                                                                                 | 200                                                                                                                                                    | 200                                                                                                                                          | 200                                                                                                                                                | 200                                                                                                                                                                                                            | 200                                                                                                                                                                                      | 200                                                                                                                                                                          | 200                                                                                                                                                            | 200                                                                                                                                                                                             | 200                                                                                                                                                                                              | N/A                                                                                                                                                                                                                                               | N/A                                                                                                                                                                      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                     | N/A                                                                                                                                                           | N/A                                                                                                                                                                         |
| Bankfull Mean Depth (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.2                                                                                                                                               | 1.1                                                                                                                                                                                | 1.2                                                                                                                                                   | 1.1                                                                                                                                                                         | 1.2                                                                                                                                             | 1.2                                                                                                                                                                                        | 0.8                                                                                                                                                                      | 0.8                                                                                                                                                                | 0.8                                                                                                                                                                 | 0.8                                                                                                                                                    | 1.0                                                                                                                                          | 1.1                                                                                                                                                | 0.8                                                                                                                                                                                                            | 0.8                                                                                                                                                                                      | 0.8                                                                                                                                                                          | 0.7                                                                                                                                                            | 0.8                                                                                                                                                                                             | 0.9                                                                                                                                                                                              | 1.4                                                                                                                                                                                                                                               | 1.4                                                                                                                                                                      | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.3                                                                                                                                                     | 1.4                                                                                                                                                           | 1.5                                                                                                                                                                         |
| Bankfull Max Depth (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.4                                                                                                                                               | 2.2                                                                                                                                                                                | 2.4                                                                                                                                                   | 2.4                                                                                                                                                                         | 2.3                                                                                                                                             | 2.5                                                                                                                                                                                        | 1.6                                                                                                                                                                      | 1.7                                                                                                                                                                | 1.8                                                                                                                                                                 | 1.8                                                                                                                                                    | 2.0                                                                                                                                          | 2.1                                                                                                                                                | 1.3                                                                                                                                                                                                            | 1.5                                                                                                                                                                                      | 1.4                                                                                                                                                                          | 1.3                                                                                                                                                            | 1.5                                                                                                                                                                                             | 1.6                                                                                                                                                                                              | 2.7                                                                                                                                                                                                                                               | 2.8                                                                                                                                                                      | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.7                                                                                                                                                     | 3.2                                                                                                                                                           | 3.0                                                                                                                                                                         |
| Bankfull Cross Sectional Area (ft <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18.5                                                                                                                                              | 18.1                                                                                                                                                                               | 19.3                                                                                                                                                  | 19.4                                                                                                                                                                        | 17.0                                                                                                                                            | 18.0                                                                                                                                                                                       | 12.0                                                                                                                                                                     | 12.6                                                                                                                                                               | 12.5                                                                                                                                                                | 12.5                                                                                                                                                   | 14.7                                                                                                                                         | 15.5                                                                                                                                               | 9.1                                                                                                                                                                                                            | 10.1                                                                                                                                                                                     | 9.3                                                                                                                                                                          | 8.8                                                                                                                                                            | 8.4                                                                                                                                                                                             | 10.0                                                                                                                                                                                             | 21.3                                                                                                                                                                                                                                              | 21.8                                                                                                                                                                     | 21.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.4                                                                                                                                                    | 19.4                                                                                                                                                          | 22.2                                                                                                                                                                        |
| Bankfull Width/Depth Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13.6                                                                                                                                              | 15.1                                                                                                                                                                               | 14.4                                                                                                                                                  | 15.1                                                                                                                                                                        | 12.2                                                                                                                                            | 12.8                                                                                                                                                                                       | 19.5                                                                                                                                                                     | 18.4                                                                                                                                                               | 20.5                                                                                                                                                                | 18.2                                                                                                                                                   | 15.9                                                                                                                                         | 13.3                                                                                                                                               | 15.7                                                                                                                                                                                                           | 14.0                                                                                                                                                                                     | 14.9                                                                                                                                                                         | 16.3                                                                                                                                                           | 14.1                                                                                                                                                                                            | 13.8                                                                                                                                                                                             | 10.9                                                                                                                                                                                                                                              | 11.3                                                                                                                                                                     | 12.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.7                                                                                                                                                    | 10.5                                                                                                                                                          | 9.4                                                                                                                                                                         |
| Entrenchment Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N/A                                                                                                                                               | N/A                                                                                                                                                                                | N/A                                                                                                                                                   | N/A                                                                                                                                                                         | N/A                                                                                                                                             | N/A                                                                                                                                                                                        | 13.1                                                                                                                                                                     | 13.1                                                                                                                                                               | 12.5                                                                                                                                                                | 13.3                                                                                                                                                   | 13.1                                                                                                                                         | 13.9                                                                                                                                               | 16.8                                                                                                                                                                                                           | 16.8                                                                                                                                                                                     | 17.0                                                                                                                                                                         | 16.7                                                                                                                                                           | 18.4                                                                                                                                                                                            | 17.1                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                               | N/A                                                                                                                                                                      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                     | N/A                                                                                                                                                           | N/A                                                                                                                                                                         |
| Bankfull Bank Height Ratio <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.0                                                                                                                                               | 1.0                                                                                                                                                                                | 1.0                                                                                                                                                   | 1.0                                                                                                                                                                         | 1.0                                                                                                                                             | 1.0                                                                                                                                                                                        | 1.0                                                                                                                                                                      | 1.0                                                                                                                                                                | 1.0                                                                                                                                                                 | 1.0                                                                                                                                                    | 1.1                                                                                                                                          | 1.1                                                                                                                                                | 1.0                                                                                                                                                                                                            | 1.0                                                                                                                                                                                      | 1.0                                                                                                                                                                          | 1.0                                                                                                                                                            | <1.0                                                                                                                                                                                            | 1.1                                                                                                                                                                                              | 1.0                                                                                                                                                                                                                                               | 1.0                                                                                                                                                                      | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0                                                                                                                                                     | 1.0                                                                                                                                                           | 1.0                                                                                                                                                                         |
| d50 (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                                                                               | N/A                                                                                                                                                                                | N/A                                                                                                                                                   | N/A                                                                                                                                                                         | N/A                                                                                                                                             | N/A                                                                                                                                                                                        | 15.4                                                                                                                                                                     | 30.8                                                                                                                                                               | 57.9                                                                                                                                                                | 29.6                                                                                                                                                   | 33.5                                                                                                                                         | 41.8                                                                                                                                               | 16.0                                                                                                                                                                                                           | 52.1                                                                                                                                                                                     | 70.5                                                                                                                                                                         | 40.2                                                                                                                                                           | 31.0                                                                                                                                                                                            | 82.6                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                               | N/A                                                                                                                                                                      | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                     | N/A                                                                                                                                                           | N/A                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                   | -                                                                                                                                                                                  |                                                                                                                                                       | - 1                                                                                                                                                                         |                                                                                                                                                 | UIIAI                                                                                                                                                                                      | Reach 1                                                                                                                                                                  | -                                                                                                                                                                  |                                                                                                                                                                     |                                                                                                                                                        |                                                                                                                                              |                                                                                                                                                    |                                                                                                                                                                                                                |                                                                                                                                                                                          |                                                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                 | UTIAF                                                                                                                                                                                            | Reach 4                                                                                                                                                                                                                                           |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                         |                                                                                                                                                               |                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                   |                                                                                                                                                                                    | ss Secti                                                                                                                                              |                                                                                                                                                                             |                                                                                                                                                 |                                                                                                                                                                                            |                                                                                                                                                                          |                                                                                                                                                                    |                                                                                                                                                                     | on 10 (P                                                                                                                                               |                                                                                                                                              |                                                                                                                                                    |                                                                                                                                                                                                                |                                                                                                                                                                                          | s Sectio                                                                                                                                                                     | · ·                                                                                                                                                            |                                                                                                                                                                                                 |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                   |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | on 12 (P                                                                                                                                                |                                                                                                                                                               | 1                                                                                                                                                                           |
| Dimension and Substrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Base                                                                                                                                              | MY1<br>656.4                                                                                                                                                                       | MY2                                                                                                                                                   | MY3                                                                                                                                                                         | MY5                                                                                                                                             | MY7                                                                                                                                                                                        | Base                                                                                                                                                                     | MY1                                                                                                                                                                | MY2                                                                                                                                                                 | MY3                                                                                                                                                    | MY5                                                                                                                                          | MY7                                                                                                                                                | Base                                                                                                                                                                                                           | MY1                                                                                                                                                                                      | MY2                                                                                                                                                                          | MY3                                                                                                                                                            | MY5                                                                                                                                                                                             | MY7                                                                                                                                                                                              | Base                                                                                                                                                                                                                                              | MY1                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                         |                                                                                                                                                               | MY7                                                                                                                                                                         |
| Bankfull Elevation (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                       |                                                                                                                                                                             |                                                                                                                                                 |                                                                                                                                                                                            |                                                                                                                                                                          |                                                                                                                                                                    |                                                                                                                                                                     |                                                                                                                                                        | CEC 2                                                                                                                                        | 656.0                                                                                                                                              | C15 0                                                                                                                                                                                                          | C1E 0                                                                                                                                                                                    |                                                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                 | C1E 7                                                                                                                                                                                            | C1E 1                                                                                                                                                                                                                                             | C1E 1                                                                                                                                                                    | MY2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MY3                                                                                                                                                     | MY5                                                                                                                                                           |                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 656.4                                                                                                                                             |                                                                                                                                                                                    | 656.4                                                                                                                                                 | 656.4                                                                                                                                                                       | 656.5                                                                                                                                           | 656.5                                                                                                                                                                                      | 656.0                                                                                                                                                                    | 656.0                                                                                                                                                              | 656.0                                                                                                                                                               | 656.0                                                                                                                                                  | 656.2                                                                                                                                        | 656.0                                                                                                                                              | 615.8                                                                                                                                                                                                          | 615.8                                                                                                                                                                                    | 615.8                                                                                                                                                                        | 615.8                                                                                                                                                          | 615.7                                                                                                                                                                                           | 615.7                                                                                                                                                                                            | 615.1                                                                                                                                                                                                                                             | 615.1                                                                                                                                                                    | 615.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 615.1                                                                                                                                                   | 615.1                                                                                                                                                         | 615.1                                                                                                                                                                       |
| Low Bank Elevation (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 656.4                                                                                                                                             | 656.4                                                                                                                                                                              | 656.4                                                                                                                                                 | 656.4                                                                                                                                                                       | 656.5                                                                                                                                           | 656.5                                                                                                                                                                                      | 656.0                                                                                                                                                                    | 656.0                                                                                                                                                              | 656.0                                                                                                                                                               | 656.0                                                                                                                                                  | 656.2                                                                                                                                        | 656.0                                                                                                                                              | 615.8                                                                                                                                                                                                          | 615.8                                                                                                                                                                                    | 615.8                                                                                                                                                                        | 615.8                                                                                                                                                          | 615.7                                                                                                                                                                                           | 615.7                                                                                                                                                                                            | 615.1                                                                                                                                                                                                                                             | 615.1                                                                                                                                                                    | 615.1<br>615.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 615.1<br>615.1                                                                                                                                          | 615.1<br>615.1                                                                                                                                                | 615.1<br>615.1                                                                                                                                                              |
| Low Bank Elevation (ft)<br>Bankfull Width (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 656.4<br>8.0                                                                                                                                      | 656.4<br>7.3                                                                                                                                                                       | 656.4<br>7.2                                                                                                                                          | 656.4<br>6.7                                                                                                                                                                | 656.5<br>6.6                                                                                                                                    | 656.5<br>6.2                                                                                                                                                                               | 656.0<br>10.5                                                                                                                                                            | 656.0<br>10.0                                                                                                                                                      | 656.0<br>10.2                                                                                                                                                       | 656.0<br>9.4                                                                                                                                           | 656.2<br>10.7                                                                                                                                | 656.0<br>8.1                                                                                                                                       | 615.8<br>8.1                                                                                                                                                                                                   | 615.8<br>8.2                                                                                                                                                                             | 615.8<br>8.2                                                                                                                                                                 | 615.8<br>8.9                                                                                                                                                   | 615.7<br>8.5                                                                                                                                                                                    | 615.7<br>9.7                                                                                                                                                                                     | 615.1<br>10.6                                                                                                                                                                                                                                     | 615.1<br>10.5                                                                                                                                                            | 615.1<br>615.1<br>10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 615.1<br>615.1<br>10.8                                                                                                                                  | 615.1<br>615.1<br>12.0                                                                                                                                        | 615.1<br>615.1<br>11.6                                                                                                                                                      |
| Low Bank Elevation (ft)<br>Bankfull Width (ft)<br>Floodprone Width (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 656.4<br>8.0<br>50                                                                                                                                | 656.4<br>7.3<br>50                                                                                                                                                                 | 656.4<br>7.2<br>50                                                                                                                                    | 656.4<br>6.7<br>50                                                                                                                                                          | 656.5<br>6.6<br>50                                                                                                                              | 656.5<br>6.2<br>50                                                                                                                                                                         | 656.0<br>10.5<br>N/A                                                                                                                                                     | 656.0<br>10.0<br>N/A                                                                                                                                               | 656.0<br>10.2<br>N/A                                                                                                                                                | 656.0<br>9.4<br>N/A                                                                                                                                    | 656.2<br>10.7<br>N/A                                                                                                                         | 656.0<br>8.1<br>N/A                                                                                                                                | 615.8<br>8.1<br>200                                                                                                                                                                                            | 615.8<br>8.2<br>200                                                                                                                                                                      | 615.8<br>8.2<br>200                                                                                                                                                          | 615.8<br>8.9<br>200                                                                                                                                            | 615.7<br>8.5<br>200                                                                                                                                                                             | 615.7<br>9.7<br>200                                                                                                                                                                              | 615.1<br>10.6<br>N/A                                                                                                                                                                                                                              | 615.1<br>10.5<br>N/A                                                                                                                                                     | 615.1<br>615.1<br>10.5<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 615.1<br>615.1<br>10.8<br>N/A                                                                                                                           | 615.1<br>615.1<br>12.0<br>N/A                                                                                                                                 | 615.1<br>615.1<br>11.6<br>N/A                                                                                                                                               |
| Low Bank Elevation (ft)<br>Bankfull Width (ft)<br>Floodprone Width (ft)<br>Bankfull Mean Depth (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 656.4<br>8.0<br>50<br>0.5                                                                                                                         | 656.4<br>7.3<br>50<br>0.5                                                                                                                                                          | 656.4<br>7.2<br>50<br>0.5                                                                                                                             | 656.4<br>6.7<br>50<br>0.5                                                                                                                                                   | 656.5<br>6.6<br>50<br>0.6                                                                                                                       | 656.5<br>6.2<br>50<br>0.6                                                                                                                                                                  | 656.0<br>10.5<br>N/A<br>0.7                                                                                                                                              | 656.0<br>10.0<br>N/A<br>0.7                                                                                                                                        | 656.0<br>10.2<br>N/A<br>0.7                                                                                                                                         | 656.0<br>9.4<br>N/A<br>0.7                                                                                                                             | 656.2<br>10.7<br>N/A<br>0.7                                                                                                                  | 656.0<br>8.1<br>N/A<br>0.9                                                                                                                         | 615.8<br>8.1<br>200<br>0.6                                                                                                                                                                                     | 615.8<br>8.2<br>200<br>0.8                                                                                                                                                               | 615.8<br>8.2<br>200<br>0.8                                                                                                                                                   | 615.8<br>8.9<br>200<br>0.8                                                                                                                                     | 615.7<br>8.5<br>200<br>0.8                                                                                                                                                                      | 615.7<br>9.7<br>200<br>0.7                                                                                                                                                                       | 615.1<br>10.6<br>N/A<br>1.2                                                                                                                                                                                                                       | 615.1<br>10.5<br>N/A<br>1.2                                                                                                                                              | 615.1<br>615.1<br>10.5<br>N/A<br>1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 615.1<br>615.1<br>10.8<br>N/A<br>1.1                                                                                                                    | 615.1<br>615.1<br>12.0<br>N/A<br>1.1                                                                                                                          | 615.1<br>615.1<br>11.6<br>N/A<br>1.2                                                                                                                                        |
| Low Bank Elevation (ft)<br>Bankfull Width (ft)<br>Floodprone Width (ft)<br>Bankfull Mean Depth (ft)<br>Bankfull Max Depth (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 656.4<br>8.0<br>50<br>0.5<br>0.9                                                                                                                  | 656.4<br>7.3<br>50<br>0.5<br>0.9                                                                                                                                                   | 656.4<br>7.2<br>50<br>0.5<br>0.8                                                                                                                      | 656.4<br>6.7<br>50<br>0.5<br>0.8                                                                                                                                            | 656.5<br>6.6<br>50<br>0.6<br>1.2                                                                                                                | 656.5<br>6.2<br>50<br>0.6<br>1.2                                                                                                                                                           | 656.0<br>10.5<br>N/A<br>0.7<br>1.5                                                                                                                                       | 656.0<br>10.0<br>N/A<br>0.7<br>1.2                                                                                                                                 | 656.0<br>10.2<br>N/A<br>0.7<br>1.3                                                                                                                                  | 656.0<br>9.4<br>N/A<br>0.7<br>1.3                                                                                                                      | 656.2<br>10.7<br>N/A<br>0.7<br>1.7                                                                                                           | 656.0<br>8.1<br>N/A<br>0.9<br>1.7                                                                                                                  | 615.8<br>8.1<br>200<br>0.6<br>1.8                                                                                                                                                                              | 615.8<br>8.2<br>200<br>0.8<br>1.9                                                                                                                                                        | 615.8<br>8.2<br>200<br>0.8<br>1.9                                                                                                                                            | 615.8<br>8.9<br>200<br>0.8<br>1.8                                                                                                                              | 615.7<br>8.5<br>200<br>0.8<br>1.7                                                                                                                                                               | 615.7<br>9.7<br>200<br>0.7<br>1.8                                                                                                                                                                | 615.1<br>10.6<br>N/A<br>1.2<br>2.7                                                                                                                                                                                                                | 615.1<br>10.5<br>N/A<br>1.2<br>2.6                                                                                                                                       | 615.1<br>615.1<br>10.5<br>N/A<br>1.2<br>2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 615.1<br>615.1<br>10.8<br>N/A<br>1.1<br>2.5                                                                                                             | 615.1<br>615.1<br>12.0<br>N/A<br>1.1<br>2.8                                                                                                                   | 615.1<br>615.1<br>11.6<br>N/A<br>1.2<br>2.5                                                                                                                                 |
| Low Bank Elevation (ft)<br>Bankfull Width (ft)<br>Floodprone Width (ft)<br>Bankfull Mean Depth (ft)<br>Bankfull Max Depth (ft)<br>Bankfull Cross Sectional Area (ft <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 656.4<br>8.0<br>50<br>0.5                                                                                                                         | 656.4<br>7.3<br>50<br>0.5<br>0.9<br>3.9                                                                                                                                            | 656.4<br>7.2<br>50<br>0.5<br>0.8<br>3.8                                                                                                               | 656.4<br>6.7<br>50<br>0.5<br>0.8<br>3.3                                                                                                                                     | 656.5<br>6.6<br>50<br>0.6                                                                                                                       | 656.5<br>6.2<br>50<br>0.6<br>1.2<br>3.7                                                                                                                                                    | 656.0<br>10.5<br>N/A<br>0.7<br>1.5<br>7.8                                                                                                                                | 656.0<br>10.0<br>N/A<br>0.7<br>1.2<br>7.0                                                                                                                          | 656.0<br>10.2<br>N/A<br>0.7<br>1.3<br>6.7                                                                                                                           | 656.0<br>9.4<br>N/A<br>0.7<br>1.3<br>6.5                                                                                                               | 656.2<br>10.7<br>N/A<br>0.7                                                                                                                  | 656.0<br>8.1<br>N/A<br>0.9                                                                                                                         | 615.8<br>8.1<br>200<br>0.6<br>1.8<br>5.0                                                                                                                                                                       | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.6                                                                                                                                                 | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.5                                                                                                                                     | 615.8<br>8.9<br>200<br>0.8<br>1.8<br>6.7                                                                                                                       | 615.7<br>8.5<br>200<br>0.8<br>1.7<br>6.9                                                                                                                                                        | 615.7<br>9.7<br>200<br>0.7<br>1.8<br>7.0                                                                                                                                                         | 615.1<br>10.6<br>N/A<br>1.2                                                                                                                                                                                                                       | 615.1<br>10.5<br>N/A<br>1.2                                                                                                                                              | 615.1<br>615.1<br>10.5<br>N/A<br>1.2<br>2.6<br>13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 615.1<br>615.1<br>10.8<br>N/A<br>1.1                                                                                                                    | 615.1<br>615.1<br>12.0<br>N/A<br>1.1                                                                                                                          | 615.1<br>615.1<br>11.6<br>N/A<br>1.2<br>2.5<br>13.4                                                                                                                         |
| Low Bank Elevation (ft)<br>Bankfull Width (ft)<br>Floodprone Width (ft)<br>Bankfull Mean Depth (ft)<br>Bankfull Mean Depth (ft)<br>Bankfull Cross Sectional Area (ft <sup>2</sup> )<br>Bankfull Width/Depth Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 656.4<br>8.0<br>50<br>0.5<br>0.9<br>4.0                                                                                                           | 656.4<br>7.3<br>50<br>0.5<br>0.9                                                                                                                                                   | 656.4<br>7.2<br>50<br>0.5<br>0.8                                                                                                                      | 656.4<br>6.7<br>50<br>0.5<br>0.8                                                                                                                                            | 656.5<br>6.6<br>50<br>0.6<br>1.2<br>4.0                                                                                                         | 656.5<br>6.2<br>50<br>0.6<br>1.2                                                                                                                                                           | 656.0<br>10.5<br>N/A<br>0.7<br>1.5                                                                                                                                       | 656.0<br>10.0<br>N/A<br>0.7<br>1.2                                                                                                                                 | 656.0<br>10.2<br>N/A<br>0.7<br>1.3                                                                                                                                  | 656.0<br>9.4<br>N/A<br>0.7<br>1.3                                                                                                                      | 656.2<br>10.7<br>N/A<br>0.7<br>1.7<br>8.0                                                                                                    | 656.0<br>8.1<br>N/A<br>0.9<br>1.7<br>7.2                                                                                                           | 615.8<br>8.1<br>200<br>0.6<br>1.8                                                                                                                                                                              | 615.8<br>8.2<br>200<br>0.8<br>1.9                                                                                                                                                        | 615.8<br>8.2<br>200<br>0.8<br>1.9                                                                                                                                            | 615.8<br>8.9<br>200<br>0.8<br>1.8                                                                                                                              | 615.7<br>8.5<br>200<br>0.8<br>1.7                                                                                                                                                               | 615.7<br>9.7<br>200<br>0.7<br>1.8                                                                                                                                                                | 615.1<br>10.6<br>N/A<br>1.2<br>2.7<br>12.3                                                                                                                                                                                                        | 615.1<br>10.5<br>N/A<br>1.2<br>2.6<br>13.2                                                                                                                               | 615.1<br>615.1<br>10.5<br>N/A<br>1.2<br>2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 615.1<br>615.1<br>10.8<br>N/A<br>1.1<br>2.5<br>12.4                                                                                                     | 615.1<br>615.1<br>12.0<br>N/A<br>1.1<br>2.8<br>13.0                                                                                                           | 615.1<br>615.1<br>11.6<br>N/A<br>1.2<br>2.5                                                                                                                                 |
| Low Bank Elevation (ft)<br>Bankfull Width (ft)<br>Floodprone Width (ft)<br>Bankfull Mean Depth (ft)<br>Bankfull Cross Sectional Area (ft <sup>2</sup> )<br>Bankfull Cross Sectional Area (ft <sup>2</sup> )<br>Bankfull Width/Depth Ratio<br>Entrenchment Ratio <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                           | 656.4<br>8.0<br>50<br>0.5<br>0.9<br>4.0<br>15.9<br>6.3                                                                                            | 656.4<br>7.3<br>50<br>0.5<br>0.9<br>3.9<br>13.7<br>6.8                                                                                                                             | 656.4<br>7.2<br>50<br>0.5<br>0.8<br>3.8<br>13.8<br>6.9                                                                                                | 656.4<br>6.7<br>50<br>0.5<br>0.8<br>3.3<br>13.4<br>7.5                                                                                                                      | 656.5<br>6.6<br>50<br>0.6<br>1.2<br>4.0<br>10.9<br>7.8                                                                                          | 656.5<br>6.2<br>50<br>0.6<br>1.2<br>3.7<br>10.2<br>8.1                                                                                                                                     | 656.0<br>10.5<br>N/A<br>0.7<br>1.5<br>7.8<br>14.1<br>N/A                                                                                                                 | 656.0<br>10.0<br>N/A<br>0.7<br>1.2<br>7.0<br>14.4<br>N/A                                                                                                           | 656.0<br>10.2<br>N/A<br>0.7<br>1.3<br>6.7<br>15.5<br>N/A                                                                                                            | 656.0<br>9.4<br>N/A<br>0.7<br>1.3<br>6.5<br>13.5<br>N/A                                                                                                | 656.2<br>10.7<br>N/A<br>0.7<br>1.7<br>8.0<br>14.4<br>N/A                                                                                     | 656.0<br>8.1<br>N/A<br>0.9<br>1.7<br>7.2<br>9.2<br>N/A                                                                                             | 615.8<br>8.1<br>200<br>0.6<br>1.8<br>5.0<br>13.2<br>24.8                                                                                                                                                       | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.6<br>10.1<br>24.4                                                                                                                                 | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.5<br>10.4<br>24.4                                                                                                                     | 615.8<br>8.9<br>200<br>0.8<br>1.8<br>6.7<br>11.7<br>22.6                                                                                                       | 615.7<br>8.5<br>200<br>0.8<br>1.7<br>6.9<br>10.4<br>23.5                                                                                                                                        | 615.7<br>9.7<br>200<br>0.7<br>1.8<br>7.0<br>13.5<br>20.5                                                                                                                                         | 615.1<br>10.6<br>N/A<br>1.2<br>2.7<br>12.3<br>9.1<br>N/A                                                                                                                                                                                          | 615.1<br>10.5<br>N/A<br>1.2<br>2.6<br>13.2<br>8.4<br>N/A                                                                                                                 | 615.1<br>615.1<br>10.5<br>N/A<br>1.2<br>2.6<br>13.1<br>8.4<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 615.1<br>615.1<br>10.8<br>N/A<br>1.1<br>2.5<br>12.4<br>9.4<br>N/A                                                                                       | 615.1<br>615.1<br>12.0<br>N/A<br>1.1<br>2.8<br>13.0<br>1.0<br>N/A                                                                                             | 615.1<br>615.1<br>11.6<br>N/A<br>1.2<br>2.5<br>13.4<br>10.1<br>N/A                                                                                                          |
| Low Bank Elevation (ft)<br>Bankfull Width (ft)<br>Floodprone Width (ft)<br>Bankfull Mean Depth (ft)<br>Bankfull Cross Sectional Area (ft <sup>2</sup> )<br>Bankfull Width/Depth Ratio<br>Entrenchment Ratio <sup>2</sup><br>Bankfull Bank Height Ratio <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                    | 656.4<br>8.0<br>50<br>0.5<br>0.9<br>4.0<br>15.9<br>6.3<br>1.0                                                                                     | 656.4<br>7.3<br>50<br>0.5<br>0.9<br>3.9<br>13.7<br>6.8<br>1.0                                                                                                                      | 656.4<br>7.2<br>50<br>0.5<br>0.8<br>3.8<br>13.8<br>6.9<br>1.0                                                                                         | 656.4<br>6.7<br>50<br>0.5<br>0.8<br>3.3<br>13.4<br>7.5<br>1.0                                                                                                               | 656.5<br>6.6<br>50<br>0.6<br>1.2<br>4.0<br>10.9<br>7.8<br>1.0                                                                                   | 656.5<br>6.2<br>50<br>0.6<br>1.2<br>3.7<br>10.2<br>8.1<br>1.0                                                                                                                              | 656.0<br>10.5<br>N/A<br>0.7<br>1.5<br>7.8<br>14.1<br>N/A<br>1.0                                                                                                          | 656.0<br>10.0<br>N/A<br>0.7<br>1.2<br>7.0<br>14.4<br>N/A<br>1.0                                                                                                    | 656.0<br>10.2<br>N/A<br>0.7<br>1.3<br>6.7<br>15.5<br>N/A<br>1.0                                                                                                     | 656.0<br>9.4<br>N/A<br>0.7<br>1.3<br>6.5<br>13.5<br>N/A<br>1.0                                                                                         | 656.2<br>10.7<br>N/A<br>0.7<br>1.7<br>8.0<br>14.4<br>N/A<br>1.0                                                                              | 656.0<br>8.1<br>N/A<br>0.9<br>1.7<br>7.2<br>9.2<br>N/A<br>1.0                                                                                      | 615.8<br>8.1<br>200<br>0.6<br>1.8<br>5.0<br>13.2<br>24.8<br>1.0                                                                                                                                                | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.6<br>10.1<br>24.4<br>1.0                                                                                                                          | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.5<br>10.4<br>24.4<br>1.0                                                                                                              | 615.8<br>8.9<br>200<br>0.8<br>1.8<br>6.7<br>11.7<br>22.6<br>1.0                                                                                                | 615.7<br>8.5<br>200<br>0.8<br>1.7<br>6.9<br>10.4<br>23.5<br>1.2                                                                                                                                 | 615.7<br>9.7<br>200<br>0.7<br>1.8<br>7.0<br>13.5<br>20.5<br>1.2                                                                                                                                  | 615.1<br>10.6<br>N/A<br>1.2<br>2.7<br>12.3<br>9.1<br>N/A<br>1.0                                                                                                                                                                                   | 615.1<br>10.5<br>N/A<br>1.2<br>2.6<br>13.2<br>8.4<br>N/A<br>1.0                                                                                                          | 615.1<br>615.1<br>10.5<br>N/A<br>1.2<br>2.6<br>13.1<br>8.4<br>N/A<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 615.1<br>615.1<br>10.8<br>N/A<br>1.1<br>2.5<br>12.4<br>9.4<br>N/A<br>1.0                                                                                | 615.1<br>615.1<br>12.0<br>N/A<br>1.1<br>2.8<br>13.0<br>1.0<br>N/A<br>1.0                                                                                      | 615.1<br>615.1<br>11.6<br>N/A<br>1.2<br>2.5<br>13.4<br>10.1<br>N/A<br>1.0                                                                                                   |
| Low Bank Elevation (ft)<br>Bankfull Width (ft)<br>Floodprone Width (ft)<br>Bankfull Mean Depth (ft)<br>Bankfull Cross Sectional Area (ft <sup>2</sup> )<br>Bankfull Cross Sectional Area (ft <sup>2</sup> )<br>Bankfull Width/Depth Ratio<br>Entrenchment Ratio <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                           | 656.4<br>8.0<br>50<br>0.5<br>0.9<br>4.0<br>15.9<br>6.3                                                                                            | 656.4<br>7.3<br>50<br>0.5<br>0.9<br>3.9<br>13.7<br>6.8                                                                                                                             | 656.4<br>7.2<br>50<br>0.5<br>0.8<br>3.8<br>13.8<br>6.9                                                                                                | 656.4<br>6.7<br>50<br>0.5<br>0.8<br>3.3<br>13.4<br>7.5                                                                                                                      | 656.5<br>6.6<br>50<br>0.6<br>1.2<br>4.0<br>10.9<br>7.8                                                                                          | 656.5<br>6.2<br>50<br>0.6<br>1.2<br>3.7<br>10.2<br>8.1<br>1.0<br>35.4                                                                                                                      | 656.0<br>10.5<br>N/A<br>0.7<br>1.5<br>7.8<br>14.1<br>N/A<br>1.0<br>N/A                                                                                                   | 656.0<br>10.0<br>N/A<br>0.7<br>1.2<br>7.0<br>14.4<br>N/A                                                                                                           | 656.0<br>10.2<br>N/A<br>0.7<br>1.3<br>6.7<br>15.5<br>N/A                                                                                                            | 656.0<br>9.4<br>N/A<br>0.7<br>1.3<br>6.5<br>13.5<br>N/A                                                                                                | 656.2<br>10.7<br>N/A<br>0.7<br>1.7<br>8.0<br>14.4<br>N/A                                                                                     | 656.0<br>8.1<br>N/A<br>0.9<br>1.7<br>7.2<br>9.2<br>N/A                                                                                             | 615.8<br>8.1<br>200<br>0.6<br>1.8<br>5.0<br>13.2<br>24.8                                                                                                                                                       | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.6<br>10.1<br>24.4                                                                                                                                 | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.5<br>10.4<br>24.4                                                                                                                     | 615.8<br>8.9<br>200<br>0.8<br>1.8<br>6.7<br>11.7<br>22.6                                                                                                       | 615.7<br>8.5<br>200<br>0.8<br>1.7<br>6.9<br>10.4<br>23.5                                                                                                                                        | 615.7<br>9.7<br>200<br>0.7<br>1.8<br>7.0<br>13.5<br>20.5<br>1.2<br>42.6                                                                                                                          | 615.1<br>10.6<br>N/A<br>1.2<br>2.7<br>12.3<br>9.1<br>N/A<br>1.0<br>N/A                                                                                                                                                                            | 615.1<br>10.5<br>N/A<br>1.2<br>2.6<br>13.2<br>8.4<br>N/A                                                                                                                 | 615.1<br>615.1<br>10.5<br>N/A<br>1.2<br>2.6<br>13.1<br>8.4<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 615.1<br>615.1<br>10.8<br>N/A<br>1.1<br>2.5<br>12.4<br>9.4<br>N/A                                                                                       | 615.1<br>615.1<br>12.0<br>N/A<br>1.1<br>2.8<br>13.0<br>1.0<br>N/A                                                                                             | 615.1<br>615.1<br>11.6<br>N/A<br>1.2<br>2.5<br>13.4<br>10.1<br>N/A                                                                                                          |
| Low Bank Elevation (ft)<br>Bankfull Width (ft)<br>Floodprone Width (ft)<br>Bankfull Mean Depth (ft)<br>Bankfull Cross Sectional Area (ft <sup>2</sup> )<br>Bankfull Width/Depth Ratio<br>Entrenchment Ratio <sup>2</sup><br>Bankfull Bank Height Ratio <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                    | 656.4<br>8.0<br>50<br>0.5<br>0.9<br>4.0<br>15.9<br>6.3<br>1.0<br>18.0                                                                             | 656.4<br>7.3<br>50<br>0.5<br>0.9<br>3.9<br>13.7<br>6.8<br>1.0<br>17.8                                                                                                              | 656.4<br>7.2<br>50<br>0.5<br>0.8<br>3.8<br>13.8<br>6.9<br>1.0<br>25.2                                                                                 | 656.4<br>6.7<br>50<br>0.5<br>0.8<br>3.3<br>13.4<br>7.5<br>1.0<br>38.8                                                                                                       | 656.5<br>6.6<br>50<br>1.2<br>4.0<br>10.9<br>7.8<br>1.0<br>20.9                                                                                  | 656.5<br>6.2<br>50<br>0.6<br>1.2<br>3.7<br>10.2<br>8.1<br>1.0<br>35.4                                                                                                                      | 656.0<br>10.5<br>N/A<br>0.7<br>1.5<br>7.8<br>14.1<br>N/A<br>1.0                                                                                                          | 656.0<br>10.0<br>N/A<br>0.7<br>1.2<br>7.0<br>14.4<br>N/A<br>1.0<br>N/A                                                                                             | 656.0<br>10.2<br>N/A<br>0.7<br>1.3<br>6.7<br>15.5<br>N/A<br>1.0<br>N/A                                                                                              | 656.0<br>9.4<br>N/A<br>0.7<br>1.3<br>6.5<br>13.5<br>N/A<br>1.0<br>N/A                                                                                  | 656.2<br>10.7<br>N/A<br>0.7<br>1.7<br>8.0<br>14.4<br>N/A<br>1.0<br>N/A                                                                       | 656.0<br>8.1<br>N/A<br>0.9<br>1.7<br>7.2<br>9.2<br>N/A<br>1.0                                                                                      | 615.8<br>8.1<br>200<br>0.6<br>1.8<br>5.0<br>13.2<br>24.8<br>1.0                                                                                                                                                | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.6<br>10.1<br>24.4<br>1.0<br>42.1                                                                                                                  | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.5<br>10.4<br>24.4<br>1.0<br>28.5                                                                                                      | 615.8<br>8.9<br>200<br>0.8<br>1.8<br>6.7<br>11.7<br>22.6<br>1.0<br>22.6                                                                                        | 615.7<br>8.5<br>200<br>0.8<br>1.7<br>6.9<br>10.4<br>23.5<br>1.2<br>24.7                                                                                                                         | 615.7<br>9.7<br>200<br>0.7<br>1.8<br>7.0<br>13.5<br>20.5<br>1.2<br>42.6                                                                                                                          | 615.1<br>10.6<br>N/A<br>1.2<br>2.7<br>12.3<br>9.1<br>N/A<br>1.0<br>N/A<br>1.0<br>N/A                                                                                                                                                              | 615.1<br>10.5<br>N/A<br>1.2<br>2.6<br>13.2<br>8.4<br>N/A<br>1.0<br>N/A                                                                                                   | 615.1<br>615.1<br>10.5<br>N/A<br>1.2<br>2.6<br>13.1<br>8.4<br>N/A<br>1.0<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 615.1<br>615.1<br>10.8<br>N/A<br>1.1<br>2.5<br>12.4<br>9.4<br>N/A<br>1.0<br>N/A                                                                         | 615.1<br>615.1<br>12.0<br>N/A<br>1.1<br>2.8<br>13.0<br>1.0<br>N/A<br>1.0<br>N/A                                                                               | 615.1<br>615.1<br>11.6<br>N/A<br>1.2<br>2.5<br>13.4<br>10.1<br>N/A<br>1.0                                                                                                   |
| Low Bank Elevation (ft)<br>Bankfull Width (ft)<br>Floodprone Width (ft)<br>Bankfull Mean Depth (ft)<br>Bankfull Cross Sectional Area (ft <sup>2</sup> )<br>Bankfull Width/Depth Ratio<br>Entrenchment Ratio <sup>2</sup><br>Bankfull Bank Height Ratio <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                    | 656.4<br>8.0<br>50<br>0.5<br>0.9<br>4.0<br>15.9<br>6.3<br>1.0<br>18.0                                                                             | 656.4<br>7.3<br>50<br>0.5<br>0.9<br>3.9<br>13.7<br>6.8<br>1.0                                                                                                                      | 656.4<br>7.2<br>50<br>0.5<br>0.8<br>3.8<br>13.8<br>6.9<br>1.0<br>25.2                                                                                 | 656.4<br>6.7<br>50<br>0.5<br>0.8<br>3.3<br>13.4<br>7.5<br>1.0<br>38.8                                                                                                       | 656.5<br>6.6<br>50<br>1.2<br>4.0<br>10.9<br>7.8<br>1.0<br>20.9                                                                                  | 656.5<br>6.2<br>50<br>0.6<br>1.2<br>3.7<br>10.2<br>8.1<br>1.0<br>35.4                                                                                                                      | 656.0<br>10.5<br>N/A<br>0.7<br>1.5<br>7.8<br>14.1<br>N/A<br>1.0<br>N/A                                                                                                   | 656.0<br>10.0<br>N/A<br>0.7<br>1.2<br>7.0<br>14.4<br>N/A<br>1.0<br>N/A                                                                                             | 656.0<br>10.2<br>N/A<br>0.7<br>1.3<br>6.7<br>15.5<br>N/A<br>1.0<br>N/A                                                                                              | 656.0<br>9.4<br>N/A<br>0.7<br>1.3<br>6.5<br>13.5<br>N/A<br>1.0                                                                                         | 656.2<br>10.7<br>N/A<br>0.7<br>1.7<br>8.0<br>14.4<br>N/A<br>1.0<br>N/A                                                                       | 656.0<br>8.1<br>N/A<br>0.9<br>1.7<br>7.2<br>9.2<br>N/A<br>1.0                                                                                      | 615.8<br>8.1<br>200<br>0.6<br>1.8<br>5.0<br>13.2<br>24.8<br>1.0                                                                                                                                                | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.6<br>10.1<br>24.4<br>1.0<br>42.1                                                                                                                  | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.5<br>10.4<br>24.4<br>1.0                                                                                                              | 615.8<br>8.9<br>200<br>0.8<br>1.8<br>6.7<br>11.7<br>22.6<br>1.0<br>22.6                                                                                        | 615.7<br>8.5<br>200<br>0.8<br>1.7<br>6.9<br>10.4<br>23.5<br>1.2<br>24.7                                                                                                                         | 615.7<br>9.7<br>200<br>0.7<br>1.8<br>7.0<br>13.5<br>20.5<br>1.2<br>42.6                                                                                                                          | 615.1<br>10.6<br>N/A<br>1.2<br>2.7<br>12.3<br>9.1<br>N/A<br>1.0<br>N/A<br>1.0<br>N/A                                                                                                                                                              | 615.1<br>10.5<br>N/A<br>1.2<br>2.6<br>13.2<br>8.4<br>N/A<br>1.0                                                                                                          | 615.1<br>615.1<br>10.5<br>N/A<br>1.2<br>2.6<br>13.1<br>8.4<br>N/A<br>1.0<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 615.1<br>615.1<br>10.8<br>N/A<br>1.1<br>2.5<br>12.4<br>9.4<br>N/A<br>1.0<br>N/A                                                                         | 615.1<br>615.1<br>12.0<br>N/A<br>1.1<br>2.8<br>13.0<br>1.0<br>N/A<br>1.0<br>N/A                                                                               | 615.1<br>615.1<br>11.6<br>N/A<br>1.2<br>2.5<br>13.4<br>10.1<br>N/A<br>1.0                                                                                                   |
| Low Bank Elevation (ft)<br>Bankfull Width (ft)<br>Floodprone Width (ft)<br>Bankfull Max Depth (ft)<br>Bankfull Cross Sectional Area (ft <sup>2</sup> )<br>Bankfull Width/Depth Ratio<br>Entrenchment Ratio <sup>2</sup><br>Bankfull Bank Height Ratio <sup>2</sup><br>d50 (mm)                                                                                                                                                                                                                                                                                                                                                                                         | 656.4<br>8.0<br>50<br>0.5<br>0.9<br>4.0<br>15.9<br>6.3<br>1.0<br>18.0                                                                             | 656.4<br>7.3<br>50<br>0.5<br>0.9<br>3.9<br>13.7<br>6.8<br>1.0<br>17.8                                                                                                              | 656.4<br>7.2<br>50<br>0.5<br>0.8<br>3.8<br>13.8<br>6.9<br>1.0<br>25.2<br>ection 1                                                                     | 656.4<br>6.7<br>50<br>0.5<br>0.8<br>3.3<br>13.4<br>7.5<br>1.0<br>38.8<br>3 (Riffle                                                                                          | 656.5<br>6.6<br>50<br>0.6<br>1.2<br>4.0<br>10.9<br>7.8<br>1.0<br>20.9                                                                           | 656.5<br>6.2<br>50<br>0.6<br>1.2<br>3.7<br>10.2<br>8.1<br>1.0<br>35.4                                                                                                                      | 656.0<br>10.5<br>N/A<br>0.7<br>1.5<br>7.8<br>14.1<br>N/A<br>1.0<br>N/A<br>1.0<br>N/A                                                                                     | 656.0<br>10.0<br>N/A<br>0.7<br>1.2<br>7.0<br>14.4<br>N/A<br>1.0<br>N/A<br>Cros                                                                                     | 656.0<br>10.2<br>N/A<br>0.7<br>1.3<br>6.7<br>15.5<br>N/A<br>1.0<br>N/A<br>s Sectio                                                                                  | 656.0<br>9.4<br>N/A<br>0.7<br>1.3<br>6.5<br>13.5<br>N/A<br>1.0<br>N/A<br>0n 14 (P                                                                      | 656.2<br>10.7<br>N/A<br>0.7<br>1.7<br>8.0<br>14.4<br>N/A<br>1.0<br>N/A<br>ool)                                                               | 656.0<br>8.1<br>N/A<br>0.9<br>1.7<br>7.2<br>9.2<br>N/A<br>1.0<br>N/A                                                                               | 615.8<br>8.1<br>200<br>0.6<br>1.8<br>5.0<br>13.2<br>24.8<br>1.0<br>18.3                                                                                                                                        | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.6<br>10.1<br>24.4<br>1.0<br>42.1<br>Cros                                                                                                          | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.5<br>10.4<br>24.4<br>1.0<br>28.5<br>Sectio                                                                                            | 615.8<br>8.9<br>200<br>0.8<br>1.8<br>6.7<br>11.7<br>22.6<br>1.0<br>22.6<br>n 15 (R                                                                             | 615.7<br>8.5<br>200<br>0.8<br>1.7<br>6.9<br>10.4<br>23.5<br>1.2<br>24.7<br>iffle)                                                                                                               | 615.7<br>9.7<br>200<br>0.7<br>1.8<br>7.0<br>13.5<br>20.5<br>1.2<br>42.6<br>U                                                                                                                     | 615.1<br>10.6<br>N/A<br>1.2<br>2.7<br>12.3<br>9.1<br>N/A<br>1.0<br>N/A<br>1.0<br>N/A                                                                                                                                                              | 615.1<br>10.5<br>N/A<br>1.2<br>2.6<br>13.2<br>8.4<br>N/A<br>1.0<br>N/A<br>Cross S                                                                                        | 615.1<br>615.1<br>10.5<br>N/A<br>1.2<br>2.6<br>13.1<br>8.4<br>N/A<br>1.0<br>N/A<br>ection 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 615.1<br>615.1<br>10.8<br>N/A<br>1.1<br>2.5<br>12.4<br>9.4<br>N/A<br>1.0<br>N/A<br>6 (Pool                                                              | 615.1<br>615.1<br>12.0<br>N/A<br>1.1<br>2.8<br>13.0<br>1.0<br>N/A<br>1.0<br>N/A                                                                               | 615.1<br>615.1<br>11.6<br>N/A<br>1.2<br>2.5<br>13.4<br>10.1<br>N/A<br>1.0<br>N/A                                                                                            |
| Low Bank Elevation (ft)<br>Bankfull Width (ft)<br>Floodprone Width (ft)<br>Bankfull Mean Depth (ft)<br>Bankfull Cross Sectional Area (ft <sup>2</sup> )<br>Bankfull Width/Depth Ratio<br>Entrenchment Ratio <sup>2</sup><br>Bankfull Bank Height Ratio <sup>3</sup><br>d50 (mm)<br>Dimension and Substrate                                                                                                                                                                                                                                                                                                                                                             | 656.4<br>8.0<br>0.5<br>0.9<br>4.0<br>15.9<br>6.3<br>1.0<br>18.0<br>Base                                                                           | 656.4<br>7.3<br>50<br>0.5<br>0.9<br>3.9<br>13.7<br>6.8<br>1.0<br>17.8<br>Cross See<br>MY1                                                                                          | 656.4<br>7.2<br>50<br>0.5<br>0.8<br>3.8<br>13.8<br>6.9<br>1.0<br>25.2<br>ection 1<br>MY2                                                              | 656.4<br>6.7<br>50<br>0.5<br>0.8<br>3.3<br>13.4<br>7.5<br>1.0<br>38.8<br>3 (Riffle<br>MY3                                                                                   | 656.5<br>6.6<br>50<br>0.6<br>1.2<br>4.0<br>10.9<br>7.8<br>1.0<br>20.9<br>MY5                                                                    | 656.5<br>6.2<br>50<br>1.2<br>3.7<br>10.2<br>8.1<br>1.0<br>35.4<br>U1<br>MY7                                                                                                                | 656.0<br>10.5<br>N/A<br>0.7<br>1.5<br>7.8<br>14.1<br>N/A<br>1.0<br>N/A<br>1.0<br>N/A<br>1B<br>Base                                                                       | 656.0<br>10.0<br>N/A<br>0.7<br>1.2<br>7.0<br>14.4<br>N/A<br>1.0<br>N/A<br>Cros<br>MY1                                                                              | 656.0<br>10.2<br>N/A<br>0.7<br>1.3<br>6.7<br>15.5<br>N/A<br>1.0<br>N/A<br>1.0<br>N/A<br>s Section<br>MY2                                                            | 656.0<br>9.4<br>N/A<br>0.7<br>1.3<br>6.5<br>13.5<br>N/A<br>1.0<br>N/A<br>1.0<br>N/A<br>90n 14 (P<br>MY3                                                | 656.2<br>10.7<br>N/A<br>0.7<br>1.7<br>8.0<br>14.4<br>N/A<br>1.0<br>N/A<br>00l)<br>MY5                                                        | 656.0<br>8.1<br>N/A<br>0.9<br>1.7<br>7.2<br>9.2<br>N/A<br>1.0<br>N/A<br>N/A                                                                        | 615.8<br>8.1<br>200<br>0.6<br>1.8<br>5.0<br>13.2<br>24.8<br>1.0<br>18.3<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                                                                            | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.6<br>10.1<br>24.4<br>1.0<br>42.1<br><b>Cros</b><br>MY1                                                                                            | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.5<br>10.4<br>24.4<br>1.0<br>28.5<br><b>Sectio</b><br>MY2                                                                              | 615.8<br>8.9<br>200<br>0.8<br>1.8<br>6.7<br>11.7<br>22.6<br>1.0<br>22.6<br>1.0<br>22.6<br><b>m 15 (R</b><br><b>MY3</b>                                         | 615.7<br>8.5<br>200<br>0.8<br>1.7<br>6.9<br>10.4<br>23.5<br>1.2<br>24.7<br>iffle)<br>MY5                                                                                                        | 615.7<br>9.7<br>200<br>0.7<br>1.8<br>7.0<br>13.5<br>20.5<br>1.2<br>42.6<br>U<br>WY7                                                                                                              | 615.1<br>10.6<br>N/A<br>1.2<br>2.7<br>12.3<br>9.1<br>N/A<br>1.0<br>N/A<br>1.0<br>N/A<br><b>12</b><br><b>2</b><br><b>3</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b> | 615.1<br>10.5<br>N/A<br>1.2<br>2.6<br>13.2<br>8.4<br>N/A<br>1.0<br>N/A<br>Cross S<br>MY1                                                                                 | 615.1<br>615.1<br>10.5<br>N/A<br>1.2<br>2.6<br>13.1<br>8.4<br>N/A<br>1.0<br>N/A<br>ection 1<br>MY2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 615.1<br>615.1<br>10.8<br>N/A<br>1.1<br>2.5<br>12.4<br>9.4<br>N/A<br>1.0<br>N/A<br>6 (Pool<br>MY3                                                       | 615.1<br>615.1<br>12.0<br>N/A<br>1.1<br>2.8<br>13.0<br>1.0<br>N/A<br>1.0<br>N/A<br>MY5                                                                        | 615.1<br>615.1<br>11.6<br>N/A<br>1.2<br>2.5<br>13.4<br>10.1<br>N/A<br>1.0<br>N/A                                                                                            |
| Low Bank Elevation (ft)<br>Bankfull Wicht (ft)<br>Floodprone Wicht (ft)<br>Bankfull Mean Depth (ft)<br>Bankfull Aux Depth (ft)<br>Bankfull Vicht/Depth Ratio<br>Entrenchment Ratio <sup>2</sup><br>d50 (mm)<br>Dimension and Substrate<br>Bankfull Elevation (ft)                                                                                                                                                                                                                                                                                                                                                                                                      | 656.4<br>8.0<br>50<br>0.5<br>15.9<br>6.3<br>1.0<br>18.0<br><b>Base</b><br>647.1                                                                   | 656.4<br>7.3<br>50<br>0.5<br>0.9<br>3.9<br>13.7<br>6.8<br>1.0<br>17.8<br>Cross Se<br>MY1<br>647.1                                                                                  | 656.4<br>7.2<br>50<br>0.5<br>0.8<br>3.8<br>13.8<br>6.9<br>1.0<br>25.2<br>ection 1<br>MY2<br>647.1                                                     | 656.4<br>6.7<br>50<br>0.5<br>0.8<br>3.3<br>13.4<br>7.5<br>1.0<br>38.8<br>3 (Riffle<br>MY3<br>647.1                                                                          | 656.5<br>6.6<br>50<br>0.6<br>1.2<br>4.0<br>10.9<br>7.8<br>1.0<br>20.9<br>MY5<br>647.1                                                           | 656.5<br>6.2<br>50<br>1.2<br>3.7<br>10.2<br>8.1<br>1.0<br>35.4<br>UT<br>MY7<br>647.0                                                                                                       | 656.0<br>10.5<br>N/A<br>0.7<br>1.5<br>7.8<br>14.1<br>N/A<br>1.0<br>N/A<br>1B<br>Base<br>646.9                                                                            | 656.0<br>10.0<br>N/A<br>0.7<br>1.2<br>7.0<br>14.4<br>N/A<br>1.0<br>N/A<br>Cros<br>MY1<br>646.9                                                                     | 656.0<br>10.2<br>N/A<br>0.7<br>1.3<br>6.7<br>15.5<br>N/A<br>1.0<br>N/A<br>1.0<br>N/A<br><b>S Sectio</b><br>MY2<br>646.9                                             | 656.0<br>9.4<br>N/A<br>0.7<br>1.3<br>6.5<br>13.5<br>N/A<br>1.0<br>N/A<br>0<br>N/A<br><b>0</b><br>1.4 (P<br>MY3<br>646.9                                | 656.2<br>10.7<br>N/A<br>0.7<br>1.7<br>8.0<br>14.4<br>N/A<br>1.0<br>N/A<br>001)<br>MY5<br>646.9                                               | 656.0<br>8.1<br>N/A<br>0.9<br>1.7<br>7.2<br>9.2<br>N/A<br>1.0<br>N/A<br>N/A<br><b>MY7</b><br>646.9                                                 | 615.8<br>8.1<br>200<br>0.6<br>1.8<br>5.0<br>13.2<br>24.8<br>1.0<br>18.3<br><b>Base</b><br>602.9                                                                                                                | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.6<br>10.1<br>24.4<br>1.0<br>42.1<br><b>Cros</b><br>MY1<br>602.9                                                                                   | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.5<br>10.4<br>24.4<br>1.0<br>28.5<br>Section<br>MY2<br>602.9                                                                           | 615.8<br>8.9<br>200<br>0.8<br>1.8<br>6.7<br>11.7<br>22.6<br>1.0<br>22.6<br><b>n 15 (R</b><br><b>MY3</b><br>602.9                                               | 615.7<br>8.5<br>200<br>0.8<br>1.7<br>6.9<br>10.4<br>23.5<br>1.2<br>24.7<br>iffle)<br>MY5<br>603.0                                                                                               | 615.7<br>9.7<br>200<br>0.7<br>1.8<br>7.0<br>13.5<br>20.5<br>1.2<br>42.6<br>U<br>42.6<br>U<br><b>MY7</b><br>602.9                                                                                 | 615.1<br>10.6<br>N/A<br>1.2<br>2.7<br>12.3<br>9.1<br>N/A<br>1.0<br>N/A<br>1.0<br>N/A<br>2<br>Base<br>602.4                                                                                                                                        | 615.1<br>10.5<br>N/A<br>1.2<br>2.6<br>13.2<br>8.4<br>N/A<br>1.0<br>N/A<br>Cross SC<br>MY1<br>602.4                                                                       | 615.1<br>615.1<br>10.5<br>N/A<br>1.2<br>2.6<br>13.1<br>8.4<br>N/A<br>1.0<br>N/A<br><b>top:</b><br>N/A<br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:</b><br><b>top:top:</b><br><b>top:top:</b><br><b>top:top:top:top:top:top:top:top:top:top:top:top:top:top:top:top:top:top:top:top:top:top:top:top:top:top:top:top:top:top:top:top:top:top:top:top:top:top:top:top:top:top:top:</b> | 615.1<br>615.1<br>10.8<br>N/A<br>1.1<br>2.5<br>12.4<br>9.4<br>N/A<br>1.0<br>N/A<br>6 (Pool<br>MY3<br>602.4                                              | 615.1<br>615.1<br>12.0<br>N/A<br>1.1<br>2.8<br>13.0<br>1.0<br>N/A<br>1.0<br>N/A<br><b>MY5</b><br>602.4                                                        | 615.1<br>615.1<br>11.6<br>N/A<br>1.2<br>2.5<br>13.4<br>10.1<br>N/A<br>1.0<br>N/A<br><b>MY7</b><br>602.4                                                                     |
| Low Bank Elevation (ft)<br>Bankfull Width (ft)<br>Floodprone Width (ft)<br>Bankfull Max Depth (ft)<br>Bankfull Cross Sectional Area (ft <sup>2</sup> )<br>Bankfull Width/Depth Ratio <sup>2</sup><br>Bankfull Bankfull Bith Ratio <sup>2</sup><br>Bankfull Bank Height Ratio <sup>2</sup><br>Bankfull Bank Height Ratio <sup>2</sup><br>Bankfull Elevation (ft)<br>Low Bank Elevation (ft)                                                                                                                                                                                                                                                                             | 656.4<br>8.0<br>50<br>0.5<br>0.9<br>4.0<br>15.9<br>6.3<br>1.0<br>18.0<br><b>Base</b><br>647.1<br>647.1                                            | 656.4<br>7.3<br>50<br>0.5<br>0.9<br>3.9<br>13.7<br>6.8<br>1.0<br>17.8<br>Cross Se<br>MY1<br>647.1<br>647.1                                                                         | 656.4<br>7.2<br>50<br>0.5<br>0.8<br>3.8<br>13.8<br>6.9<br>1.0<br>25.2<br>ection 1<br>MY2<br>647.1<br>647.1                                            | 656.4<br>6.7<br>50<br>0.5<br>0.8<br>3.3<br>13.4<br>7.5<br>1.0<br>38.8<br>3 (Riffle<br>MY3<br>647.1<br>647.1                                                                 | 656.5<br>6.6<br>50<br>0.6<br>1.2<br>4.0<br>10.9<br>7.8<br>1.0<br>20.9<br>MY5<br>647.1<br>647.1                                                  | 656.5<br>6.2<br>50<br>0.6<br>1.2<br>3.7<br>10.2<br>8.1<br>1.0<br>35.4<br>U<br>0<br>35.4<br>U<br>0<br>647.0<br>647.0                                                                        | 656.0<br>10.5<br>N/A<br>0.7<br>1.5<br>7.8<br>14.1<br>N/A<br>1.0<br>N/A<br>1B<br>Base<br>646.9<br>646.9                                                                   | 656.0<br>10.0<br>N/A<br>0.7<br>1.2<br>7.0<br>14.4<br>N/A<br>1.0<br>N/A<br>Cros<br>MY1<br>646.9<br>646.9                                                            | 656.0<br>10.2<br>N/A<br>0.7<br>1.3<br>6.7<br>15.5<br>N/A<br>1.0<br>N/A<br>s Section<br>MY2<br>646.9<br>646.9                                                        | 656.0<br>9.4<br>N/A<br>0.7<br>1.3<br>6.5<br>13.5<br>N/A<br>1.0<br>N/A<br>0<br>N/A<br><b>MY3</b><br>646.9<br>646.9                                      | 656.2<br>10.7<br>N/A<br>0.7<br>1.7<br>8.0<br>14.4<br>N/A<br>1.0<br>N/A<br>001)<br>MY5<br>646.9<br>646.9                                      | 656.0<br>8.1<br>N/A<br>0.9<br>1.7<br>7.2<br>9.2<br>N/A<br>1.0<br>N/A<br>N/A<br><b>MY7</b><br>646.9<br>646.9                                        | 615.8<br>8.1<br>200<br>0.6<br>1.8<br>5.0<br>13.2<br>24.8<br>1.0<br>18.3<br><b>Base</b><br>602.9<br>602.9                                                                                                       | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.6<br>10.1<br>24.4<br>1.0<br>42.1<br>42.1<br><b>Cros</b><br><b>MY1</b><br>602.9<br>602.9                                                           | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.5<br>10.4<br>24.4<br>1.0<br>28.5<br><b>Sectio</b><br>MY2<br>602.9<br>602.9                                                            | 615.8<br>8.9<br>200<br>0.8<br>1.8<br>6.7<br>11.7<br>22.6<br>1.0<br>22.6<br><b>n 15 (R</b><br><b>MY3</b><br>602.9<br>602.9                                      | 615.7<br>8.5<br>200<br>0.8<br>1.7<br>6.9<br>10.4<br>23.5<br>1.2<br>24.7<br>iffle)<br>MY5<br>603.0<br>603.0                                                                                      | 615.7<br>9.7<br>200<br>0.7<br>1.8<br>7.0<br>13.5<br>20.5<br>1.2<br>42.6<br>U<br>42.6<br>U<br><b>MY7</b><br>602.9<br>602.9                                                                        | 615.1<br>10.6<br>N/A<br>1.2<br>2.7<br>12.3<br>9.1<br>N/A<br>1.0<br>N/A<br>1.0<br>N/A<br>2<br><b>Base</b><br>602.4<br>602.4                                                                                                                        | 615.1<br>10.5<br>N/A<br>1.2<br>2.6<br>13.2<br>8.4<br>N/A<br>1.0<br>N/A<br>Cross S<br>MY1<br>602.4<br>602.4                                                               | 615.1<br>615.1<br>10.5<br>N/A<br>1.2<br>2.6<br>13.1<br>8.4<br>N/A<br>1.0<br>N/A<br>ection 1<br>MY2<br>602.4<br>602.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 615.1<br>615.1<br>10.8<br>N/A<br>1.1<br>2.5<br>12.4<br>9.4<br>N/A<br>1.0<br>N/A<br>6 (Pool<br>MY3<br>602.4<br>602.4                                     | 615.1<br>615.1<br>12.0<br>N/A<br>1.1<br>2.8<br>13.0<br>1.0<br>N/A<br>1.0<br>N/A<br>0<br>MY5<br>602.4<br>602.4                                                 | 615.1<br>615.1<br>11.6<br>N/A<br>1.2<br>2.5<br>13.4<br>10.1<br>N/A<br>1.0<br>N/A<br><b>MY7</b><br>602.4<br>602.4                                                            |
| Low Bank Elevation (ft)<br>Bankfull Width (ft)<br>Bankfull Mean Depth (ft)<br>Bankfull Mean Depth (ft)<br>Bankfull Cross Sectional Area (ft <sup>2</sup> )<br>Bankfull Width/Depth Ratio<br>Bankfull Bank Height Ratio<br>Bankfull Bank Height Ratio<br>Bankfull Bank Height Ratio<br>Dimension and Substrate<br>Bankfull Elevation (ft)<br>Low Bank Elevation (ft)<br>Bankfull Width (ft)                                                                                                                                                                                                                                                                             | 656.4<br>8.0<br>50<br>0.5<br>0.9<br>4.0<br>15.9<br>6.3<br>1.0<br>18.0<br><b>Base</b><br>647.1<br>647.1<br>7.7                                     | 656.4<br>7.3<br>50<br>0.5<br>0.9<br>3.9<br>13.7<br>6.8<br>1.0<br>17.8<br>Cross Se<br>MY1<br>647.1<br>647.1<br>7.8                                                                  | 656.4<br>7.2<br>50<br>0.5<br>0.8<br>3.8<br>13.8<br>6.9<br>1.0<br>25.2<br>ection 1<br>5.2<br>647.1<br>647.1<br>7.7                                     | 656.4<br>6.7<br>50<br>0.5<br>0.8<br>3.3<br>13.4<br>7.5<br>1.0<br>38.8<br>3 (Riffle<br>647.1<br>647.1<br>647.1<br>7.4                                                        | 656.5<br>6.6<br>50<br>0.6<br>1.2<br>4.0<br>10.9<br>7.8<br>1.0<br>20.9<br>MY5<br>647.1<br>647.1<br>8.7                                           | 656.5<br>6.2<br>50<br>0.6<br>1.2<br>3.7<br>10.2<br>8.1<br>1.0<br>35.4<br>U<br>0<br>35.4<br>U<br>0<br>647.0<br>647.0<br>647.0<br>8.0                                                        | 656.0<br>10.5<br>N/A<br>0.7<br>1.5<br>7.8<br>14.1<br>N/A<br>1.0<br>N/A<br>1B<br>Base<br>646.9<br>646.9<br>9.7                                                            | 656.0<br>10.0<br>N/A<br>0.7<br>1.2<br>7.0<br>14.4<br>N/A<br>1.0<br>N/A<br>Cros<br>MY1<br>646.9<br>646.9<br>10.1                                                    | 656.0<br>10.2<br>N/A<br>0.7<br>1.3<br>6.7<br>15.5<br>N/A<br>1.0<br>N/A<br>s Section<br>MY2<br>646.9<br>646.9<br>9.8                                                 | 656.0<br>9.4<br>N/A<br>0.7<br>1.3<br>6.5<br>13.5<br>N/A<br>1.0<br>N/A<br>1.0<br>N/A<br><b>MY3</b><br>646.9<br>646.9<br>10.0                            | 656.2<br>10.7<br>N/A<br>0.7<br>1.7<br>8.0<br>14.4<br>N/A<br>1.0<br>N/A<br>00l)<br>MY5<br>646.9<br>646.9<br>9.8                               | 656.0<br>8.1<br>N/A<br>0.9<br>1.7<br>7.2<br>9.2<br>N/A<br>1.0<br>N/A<br>1.0<br>N/A<br><b>MY7</b><br>646.9<br>646.9<br>10.6                         | 615.8<br>8.1<br>200<br>0.6<br>1.8<br>5.0<br>13.2<br>24.8<br>1.0<br>18.3<br><b>Base</b><br>602.9<br>602.9<br>602.9<br>7.1                                                                                       | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.6<br>10.1<br>24.4<br>1.0<br>42.1<br>42.1<br><b>Cros</b><br><b>MY1</b><br>602.9<br>602.9<br>7.0                                                    | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.5<br>10.4<br>24.4<br>1.0<br>28.5<br><b>Sectio</b><br>MY2<br>602.9<br>602.9<br>6.8                                                     | 615.8<br>8.9<br>200<br>0.8<br>1.8<br>6.7<br>11.7<br>22.6<br>1.0<br>22.6<br>n 15 (R<br>MY3<br>602.9<br>602.9<br>6.6                                             | 615.7<br>8.5<br>200<br>0.8<br>1.7<br>6.9<br>10.4<br>23.5<br>1.2<br>24.7<br><b>iffle)</b><br><b>MY5</b><br>603.0<br>603.0<br>6.8                                                                 | 615.7<br>9.7<br>200<br>0.7<br>1.8<br>7.0<br>13.5<br>20.5<br>1.2<br>42.6<br>U<br>42.6<br>U<br>MY7<br>602.9<br>602.9<br>5.2                                                                        | 615.1<br>10.6<br>N/A<br>1.2<br>2.7<br>12.3<br>9.1<br>N/A<br>1.0<br>N/A<br>1.0<br>N/A<br><b>12</b><br><b>Base</b><br>602.4<br>602.4<br>602.4<br>9.5                                                                                                | 615.1<br>10.5<br>N/A<br>1.2<br>2.6<br>13.2<br>8.4<br>N/A<br>1.0<br>N/A<br>Cross S<br>MY1<br>602.4<br>602.4<br>9.5                                                        | 615.1<br>615.1<br>10.5<br>N/A<br>1.2<br>2.6<br>13.1<br>8.4<br>N/A<br>1.0<br>N/A<br>ection 1<br>MY2<br>602.4<br>602.4<br>9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 615.1<br>615.1<br>10.8<br>N/A<br>1.1<br>2.5<br>12.4<br>9.4<br>N/A<br>1.0<br>N/A<br>6 (Pool<br>MY3<br>602.4<br>602.4<br>9.9                              | 615.1<br>615.1<br>12.0<br>N/A<br>1.1<br>2.8<br>13.0<br>1.0<br>N/A<br>1.0<br>N/A<br>0.0<br>A<br><b>MY5</b><br>602.4<br>602.4<br>9.0                            | 615.1<br>615.1<br>11.6<br>N/A<br>1.2<br>2.5<br>13.4<br>10.1<br>N/A<br>1.0<br>N/A<br><b>MY7</b><br>602.4<br>602.4<br>8.7                                                     |
| Low Bank Elevation (ft)<br>Bankfull Width (ft)<br>Floodprone Width (ft)<br>Bankfull Max Depth (ft)<br>Bankfull Cross Sectional Area (ft <sup>2</sup> )<br>Bankfull Width/Depth Ratio<br>Bankfull Bank Height Ratio <sup>2</sup><br>Bankfull Bank Height Ratio <sup>2</sup><br>d50 (mm)<br>Dimension and Substrate<br>Bankfull Elevation (ft)<br>Low Bank Elevation (ft)<br>Bankfull Width (ft)<br>Floodprone Width (ft)                                                                                                                                                                                                                                                | 656.4<br>8.0<br>50<br>0.5<br>0.9<br>4.0<br>15.9<br>6.3<br>1.0<br>18.0<br><b>Base</b><br>647.1<br>647.1<br>7.7<br>70                               | 656.4<br>7.3<br>50<br>0.5<br>0.9<br>3.9<br>13.7<br>6.8<br>1.0<br>17.8<br>Cross Se<br>MY1<br>647.1<br>647.1<br>7.8<br>70                                                            | 656.4<br>7.2<br>50<br>0.5<br>0.8<br>3.8<br>13.8<br>6.9<br>1.0<br>25.2<br>ection 1<br>647.1<br>647.1<br>7.7<br>70                                      | 656.4<br>6.7<br>50<br>0.5<br>0.8<br>3.3<br>13.4<br>7.5<br>1.0<br>38.8<br><b>3 (Riffle</b><br><b>MY3</b><br>647.1<br>647.1<br>7.4<br>70                                      | 656.5<br>6.6<br>50<br>0.6<br>1.2<br>4.0<br>10.9<br>7.8<br>1.0<br>20.9<br>MY5<br>647.1<br>647.1<br>8.7<br>70                                     | 656.5<br>6.2<br>50<br>0.6<br>1.2<br>3.7<br>10.2<br>8.1<br>1.0<br>35.4<br>U1<br>647.0<br>647.0<br>647.0<br>8.0<br>70                                                                        | 656.0<br>10.5<br>N/A<br>0.7<br>1.5<br>7.8<br>14.1<br>N/A<br>1.0<br>N/A<br><b>1B</b><br>Base<br>646.9<br>646.9<br>9.7<br>N/A                                              | 656.0<br>10.0<br>N/A<br>0.7<br>1.2<br>7.0<br>14.4<br>N/A<br>1.0<br>N/A<br><b>Cros</b><br><b>MY1</b><br>646.9<br>646.9<br>10.1<br>N/A                               | 656.0<br>10.2<br>N/A<br>0.7<br>1.3<br>6.7<br>15.5<br>N/A<br>1.0<br>N/A<br>s Section<br>MY2<br>646.9<br>646.9<br>9.8<br>N/A                                          | 656.0<br>9.4<br>N/A<br>0.7<br>1.3<br>6.5<br>13.5<br>N/A<br>1.0<br>N/A<br>0 14 (P<br>MY3<br>646.9<br>646.9<br>646.9<br>10.0<br>N/A                      | 656.2<br>10.7<br>N/A<br>0.7<br>1.7<br>8.0<br>14.4<br>N/A<br>1.0<br>N/A<br>00l)<br>MY5<br>646.9<br>646.9<br>9.8<br>N/A                        | 656.0<br>8.1<br>N/A<br>0.9<br>1.7<br>7.2<br>9.2<br>N/A<br>1.0<br>N/A<br>MY7<br>646.9<br>646.9<br>10.6<br>N/A                                       | 615.8<br>8.1<br>200<br>0.6<br>1.8<br>5.0<br>13.2<br>24.8<br>1.0<br>18.3<br><b>Base</b><br>602.9<br>602.9<br>602.9<br>50                                                                                        | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.6<br>10.1<br>24.4<br>1.0<br>42.1<br>42.1<br>602.9<br>602.9<br>602.9<br>7.0<br>50                                                                  | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.5<br>10.4<br>24.4<br>1.0<br>28.5<br><b>Sectio</b><br><b>MY2</b><br>602.9<br>602.9<br>6.8<br>50                                        | 615.8<br>8.9<br>200<br>0.8<br>1.8<br>6.7<br>11.7<br>22.6<br>1.0<br>22.6<br><b>n 15 (R</b><br><b>MY3</b><br>602.9<br>602.9<br>6.6<br>50                         | 615.7<br>8.5<br>200<br>0.8<br>1.7<br>6.9<br>10.4<br>23.5<br>1.2<br>24.7<br>24.7<br><b>iffle)</b><br><b>MY5</b><br>603.0<br>603.0<br>603.0<br>6.8<br>50                                          | 615.7<br>9.7<br>200<br>0.7<br>1.8<br>7.0<br>13.5<br>20.5<br>1.2<br>42.6<br>U<br>42.6<br>U<br>42.6<br>U<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 615.1<br>10.6<br>N/A<br>1.2<br>2.7<br>12.3<br>9.1<br>N/A<br>1.0<br>N/A<br>1.0<br>N/A<br><b>2</b><br><b>Base</b><br>602.4<br>602.4<br>602.4<br>9.5<br>N/A                                                                                          | 615.1<br>10.5<br>N/A<br>1.2<br>2.6<br>13.2<br>8.4<br>N/A<br>1.0<br>N/A<br>Cross S(<br>MY1<br>602.4<br>602.4<br>9.5<br>N/A                                                | 615.1<br>615.1<br>10.5<br>N/A<br>1.2<br>2.6<br>13.1<br>8.4<br>N/A<br>1.0<br>N/A<br><b>MY2</b><br>602.4<br>602.4<br>9.9<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 615.1<br>615.1<br>10.8<br>N/A<br>1.1<br>2.5<br>12.4<br>9.4<br>N/A<br>1.0<br>N/A<br>6 (Pool<br>MY3<br>602.4<br>602.4<br>9.9<br>N/A                       | 615.1<br>615.1<br>12.0<br>N/A<br>1.1<br>2.8<br>13.0<br>1.0<br>N/A<br>1.0<br>N/A<br><b>MY5</b><br>602.4<br>602.4<br>9.0<br>N/A                                 | 615.1<br>615.1<br>11.6<br>N/A<br>1.2<br>2.5<br>13.4<br>10.1<br>N/A<br>1.0<br>N/A<br><b>MY7</b><br>602.4<br>602.4<br>8.7<br>N/A                                              |
| Low Bank Elevation (ft)<br>Bankfull Width (ft)<br>Bankfull Man Depth (ft)<br>Bankfull Man Depth (ft)<br>Bankfull Cross Sectional Area (ft <sup>2</sup> )<br>Bankfull Cross Sectional Area (ft <sup>2</sup> )<br>Bankfull Bank Height Ratio <sup>2</sup><br>Bankfull Bank Height Ratio <sup>2</sup><br>Bankfull Elevation (ft)<br>Low Bank Elevation (ft)<br>Bankfull Width (ft)<br>Floodprone Width (ft)<br>Bankfull Mean Depth (ft)                                                                                                                                                                                                                                   | 656.4<br>8.0<br>50<br>0.5<br>0.9<br>4.0<br>15.9<br>6.3<br>1.0<br>18.0<br><b>Base</b><br>647.1<br>647.1<br>7.7<br>70<br>0.5                        | 656.4<br>7.3<br>50<br>0.5<br>0.9<br>3.9<br>13.7<br>6.8<br>1.0<br>17.8<br><b>Cross Sc</b><br><b>MY1</b><br>647.1<br>647.1<br>7.8<br>70<br>0.5                                       | 656.4<br>7.2<br>50<br>0.5<br>0.8<br>3.8<br>13.8<br>6.9<br>1.0<br>25.2<br>ection 1<br>647.1<br>647.1<br>7.7<br>70<br>0.4                               | 656.4<br>6.7<br>50<br>0.5<br>0.8<br>3.3<br>13.4<br>7.5<br>1.0<br>38.8<br>3 (Riffle<br>MY3<br>647.1<br>647.1<br>647.1<br>7.4<br>70<br>0.4                                    | 656.5<br>6.6<br>50<br>0.6<br>1.2<br>4.0<br>10.9<br>7.8<br>1.0<br>20.9<br>MY5<br>647.1<br>647.1<br>8.7<br>70<br>0.5                              | 656.5<br>6.2<br>50<br>1.2<br>3.7<br>10.2<br>8.1<br>1.0<br>35.4<br>U1<br>35.4<br>U1<br>647.0<br>647.0<br>647.0<br>647.0<br>647.0                                                            | 656.0<br>10.5<br>N/A<br>0.7<br>1.5<br>7.8<br>14.1<br>N/A<br>1.0<br>N/A<br>1.0<br>N/A<br>646.9<br>646.9<br>646.9<br>9.7<br>N/A<br>0.8                                     | 656.0<br>10.0<br>N/A<br>0.7<br>1.2<br>7.0<br>14.4<br>N/A<br>1.0<br>N/A<br>MY1<br>646.9<br>10.1<br>N/A<br>0.7                                                       | 656.0<br>10.2<br>N/A<br>0.7<br>1.3<br>6.7<br>15.5<br>N/A<br>1.0<br>N/A<br>1.0<br>N/A<br><b>S Sectio</b><br><b>MY2</b><br>646.9<br>9.8<br>646.9<br>9.8<br>N/A<br>0.7 | 656.0<br>9.4<br>N/A<br>0.7<br>1.3<br>6.5<br>13.5<br>N/A<br>1.0<br>N/A<br>0.7<br>646.9<br>10.0<br>N/A<br>0.7                                            | 656.2<br>10.7<br>N/A<br>0.7<br>1.7<br>8.0<br>14.4<br>N/A<br>1.0<br>N/A<br>000<br><b>MY5</b><br>646.9<br>9.8<br>646.9<br>9.8<br>N/A<br>0.7    | 656.0<br>8.1<br>N/A<br>0.9<br>1.7<br>7.2<br>9.2<br>N/A<br>1.0<br>N/A<br>1.0<br>N/A<br>646.9<br>646.9<br>646.9<br>10.6<br>N/A<br>0.7                | 615.8<br>8.1<br>200<br>0.6<br>1.8<br>5.0<br>13.2<br>24.8<br>1.0<br>18.3<br><b>Base</b><br>602.9<br>602.9<br>602.9<br>7.1<br>50                                                                                 | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.6<br>10.1<br>24.4<br>1.0<br>42.1<br>42.1<br><b>Cros</b><br><b>MY1</b><br>602.9<br>602.9<br>7.0<br>50<br>50                                        | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.5<br>10.4<br>24.4<br>1.0<br>28.5<br><b>Sectio</b><br><b>MY2</b><br>602.9<br>602.9<br>602.9<br>602.9<br>50<br>0.5                      | 615.8<br>8.9<br>200<br>0.8<br>1.8<br>6.7<br>11.7<br>22.6<br>1.0<br>22.6<br>n 15 (R<br>MY3<br>602.9<br>602.9<br>602.9<br>602.9<br>50<br>0.5                     | 615.7<br>8.5<br>200<br>0.8<br>1.7<br>6.9<br>10.4<br>23.5<br>1.2<br>24.7<br>iffle)<br>MY5<br>603.0<br>603.0<br>6.8<br>50<br>0.6                                                                  | 615.7<br>9.7<br>200<br>0.7<br>1.8<br>7.0<br>13.5<br>20.5<br>1.2<br>42.6<br>U<br>42.6<br>U<br><b>MY7</b><br>602.9<br>602.9<br>5.2<br>50<br>0.5                                                    | 615.1<br>10.6<br>N/A<br>1.2<br>2.7<br>12.3<br>9.1<br>N/A<br>1.0<br>N/A<br>1.0<br>N/A<br>602.4<br>602.4<br>602.4<br>9.5<br>N/A<br>0.6                                                                                                              | 615.1<br>10.5<br>N/A<br>1.2<br>2.6<br>13.2<br>8.4<br>N/A<br>1.0<br>N/A<br>Cross SC<br>MY1<br>602.4<br>9.5<br>N/A<br>0.6                                                  | 615.1<br>615.1<br>10.5<br>N/A<br>1.2<br>2.6<br>13.1<br>8.4<br>N/A<br>1.0<br>N/A<br>0.0<br>4<br>02.4<br>9.9<br>N/A<br>0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 615.1<br>615.1<br>10.8<br>N/A<br>1.1<br>2.5<br>12.4<br>9.4<br>N/A<br>1.0<br>N/A<br>6 (Pool<br>MY3<br>602.4<br>9.9<br>N/A<br>0.6                         | 615.1<br>615.1<br>12.0<br>N/A<br>1.1<br>2.8<br>13.0<br>1.0<br>N/A<br>1.0<br>N/A<br>602.4<br>602.4<br>9.0<br>N/A<br>0.6                                        | 615.1<br>615.1<br>11.6<br>N/A<br>1.2<br>2.5<br>13.4<br>10.1<br>N/A<br>1.0<br>N/A<br>602.4<br>602.4<br>8.7<br>N/A<br>0.7                                                     |
| Low Bank Elevation (ft)<br>Bankfull Width (ft)<br>Floodprone Width (ft)<br>Bankfull Mean Depth (ft)<br>Bankfull Cross Sectional Area (ft <sup>2</sup> )<br>Bankfull Width/Depth Ratio<br>Entrenchment Ratio <sup>2</sup><br>d50 (mm)<br>Dimension and Substrate<br>Bankfull Elevation (ft)<br>Low Bank Elevation (ft)<br>Bankfull Width (ft)<br>Floodprone Width (ft)<br>Bankfull Mean Depth (ft)<br>Bankfull Mean Depth (ft)                                                                                                                                                                                                                                          | 656.4<br>8.0<br>50<br>0.5<br>0.9<br>4.0<br>15.9<br>6.3<br>1.0<br>18.0<br>8ase<br>647.1<br>647.1<br>7.7<br>70<br>0.5<br>0.7                        | 656.4<br>7.3<br>50<br>0.5<br>3.9<br>13.7<br>6.8<br>1.0<br>17.8<br><b>Cross Se</b><br><b>MY1</b><br>647.1<br>647.1<br>647.1<br>7.8<br>70<br>0.5<br>0.9                              | 656.4<br>7.2<br>50<br>0.5<br>3.8<br>13.8<br>6.9<br>1.0<br>25.2<br>ection 1<br>647.1<br>647.1<br>7.7<br>70<br>0.4<br>0.8                               | 656.4<br>6.7<br>50<br>0.5<br>0.8<br>3.3<br>13.4<br>7.5<br>1.0<br>38.8<br>3 (Riffle<br>MY3<br>647.1<br>647.1<br>647.1<br>7.4<br>70<br>0.4<br>0.8                             | 656.5<br>6.6<br>50<br>0.6<br>1.2<br>4.0<br>10.9<br>7.8<br>1.0<br>20.9<br>MY5<br>647.1<br>647.1<br>8.7<br>70<br>0.5<br>0.9                       | 656.5<br>6.2<br>50<br>0.6<br>1.2<br>3.7<br>10.2<br>8.1<br>1.0<br>35.4<br>U1<br>0<br>55.4<br>U1<br>647.0<br>647.0<br>647.0<br>647.0<br>70<br>0.4<br>0.9                                     | 656.0<br>10.5<br>N/A<br>0.7<br>1.5<br>7.8<br>14.1<br>N/A<br>1.0<br>N/A<br>1.0<br>N/A<br>646.9<br>646.9<br>9.7<br>N/A<br>0.8<br>1.4                                       | 656.0<br>10.0<br>N/A<br>0.7<br>1.2<br>7.0<br>14.4<br>N/A<br>1.0<br>N/A<br><b>Cros</b><br><b>MY1</b><br>646.9<br>646.9<br>10.1<br>N/A<br>0.7<br>1.3                 | 656.0<br>10.2<br>N/A<br>0.7<br>1.3<br>6.7<br>15.5<br>N/A<br>1.0<br>N/A<br>5<br>Section<br>MY2<br>646.9<br>646.9<br>9.8<br>N/A<br>0.7<br>1.4                         | 656.0<br>9.4<br>N/A<br>0.7<br>1.3<br>6.5<br>13.5<br>N/A<br>1.0<br>N/A<br>0.7<br>1.3<br>646.9<br>646.9<br>10.0<br>N/A<br>0.7<br>1.3                     | 656.2<br>10.7<br>N/A<br>0.7<br>1.7<br>8.0<br>14.4<br>N/A<br>1.0<br>N/A<br>00l)<br>MY5<br>646.9<br>646.9<br>646.9<br>9.8<br>N/A<br>0.7<br>1.4 | 656.0<br>8.1<br>N/A<br>0.9<br>1.7<br>7.2<br>9.2<br>N/A<br>1.0<br>N/A<br>646.9<br>646.9<br>646.9<br>10.6<br>N/A<br>0.7<br>1.4                       | 615.8<br>8.1<br>200<br>0.6<br>1.8<br>5.0<br>13.2<br>24.8<br>1.0<br>18.3<br><b>Base</b><br>602.9<br>602.9<br>602.9<br>7.1<br>50<br>0.5                                                                          | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.6<br>10.1<br>24.4<br>1.0<br>42.1<br>42.1<br>602.9<br>602.9<br>602.9<br>7.0<br>50<br>0.5<br>0.9                                                    | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.5<br>10.4<br>24.4<br>1.0<br>28.5<br><b>Sectio</b><br>MY2<br>602.9<br>602.9<br>602.9<br>6.8<br>50<br>0.5<br>0.9                        | 615.8<br>8.9<br>200<br>0.8<br>1.8<br>6.7<br>11.7<br>22.6<br>1.0<br>22.6<br>n 15 (R<br>MY3<br>602.9<br>602.9<br>6.6<br>50<br>0.5<br>0.8                         | 615.7<br>8.5<br>200<br>0.8<br>1.7<br>6.9<br>10.4<br>23.5<br>1.2<br>24.7<br>24.7<br>603.0<br>603.0<br>603.0<br>603.0<br>6.8<br>50<br>0.6<br>1.1                                                  | 615.7<br>9.7<br>200<br>0.7<br>1.8<br>7.0<br>13.5<br>20.5<br>1.2<br>42.6<br>U<br><b>MY7</b><br>602.9<br>602.9<br>602.9<br>5.2<br>50<br>0.5<br>1.0                                                 | 615.1<br>10.6<br>N/A<br>1.2<br>2.7<br>12.3<br>9.1<br>N/A<br>1.0<br>N/A<br>1.0<br>N/A<br>602.4<br>602.4<br>602.4<br>602.4<br>602.4<br>602.4<br>0.6<br>1.3                                                                                          | 615.1<br>10.5<br>N/A<br>1.2<br>2.6<br>13.2<br>8.4<br>N/A<br>1.0<br>N/A<br>0.7<br>602.4<br>602.4<br>602.4<br>602.4<br>9.5<br>N/A<br>0.6<br>1.3                            | 615.1<br>615.1<br>10.5<br>N/A<br>1.2<br>2.6<br>13.1<br>8.4<br>N/A<br>1.0<br>N/A<br><b>MY2</b><br>602.4<br>602.4<br>602.4<br>9.9<br>N/A<br>0.6<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 615.1<br>615.1<br>10.8<br>N/A<br>1.1<br>2.5<br>12.4<br>9.4<br>N/A<br>1.0<br>N/A<br>6(Pool<br>MY3<br>602.4<br>602.4<br>602.4<br>9.9<br>N/A<br>0.6<br>1.3 | 615.1<br>615.1<br>12.0<br>N/A<br>1.1<br>2.8<br>13.0<br>1.0<br>N/A<br>1.0<br>N/A<br>602.4<br>602.4<br>602.4<br>9.0<br>N/A<br>0.6<br>1.4                        | 615.1<br>615.1<br>11.6<br>N/A<br>1.2<br>2.5<br>13.4<br>10.1<br>N/A<br>1.0<br>N/A<br>602.4<br>602.4<br>602.4<br>8.7<br>N/A<br>0.7<br>1.7                                     |
| Low Bank Elevation (ft)<br>Bankfull Wridth (ft)<br>Floodprone Wridth (ft)<br>Bankfull Max Depth (ft)<br>Bankfull Cross Sectional Area (ft <sup>2</sup> )<br>Bankfull Wridth/Depth Ratio<br>Entrenchment Ratio <sup>2</sup><br>Bankfull Bank Height Ratio <sup>2</sup><br>d50 (mm)<br>Dimension and Substrate<br>Bankfull Elevation (ft)<br>Bankfull Wridth (ft)<br>Bankfull Wridth (ft)<br>Bankfull Max Depth (ft)<br>Bankfull Max Depth (ft)<br>Bankfull Cross Sectional Area (ft <sup>2</sup> )                                                                                                                                                                      | 656.4<br>8.0<br>50<br>0.5<br>1.5<br>6.3<br>1.0<br>18.0<br>8ase<br>647.1<br>647.1<br>647.1<br>7.7<br>70<br>0.5<br>0.7<br>3.5                       | 656.4<br>7.3<br>50<br>0.5<br>0.9<br>3.9<br>13.7<br>6.8<br>1.0<br>17.8<br>Cross Sc<br>MY1<br>647.1<br>647.1<br>7.8<br>70<br>0.5<br>0.9<br>3.6                                       | 656.4<br>7.2<br>50<br>0.5<br>0.8<br>3.8<br>13.8<br>6.9<br>1.0<br>25.2<br>ection 1<br>647.1<br>647.1<br>647.1<br>7.7<br>70<br>0.4<br>0.8<br>3.2        | 656.4<br>6.7<br>50<br>0.5<br>0.8<br>3.3<br>13.4<br>7.5<br>1.0<br>38.8<br>3 (Riffle<br>MY3<br>647.1<br>647.1<br>647.1<br>7.4<br>70<br>0.4<br>0.8<br>2.7                      | 656.5<br>6.6<br>50<br>0.6<br>1.2<br>4.0<br>10.9<br>7.8<br>1.0<br>20.9<br>MY5<br>647.1<br>647.1<br>8.7<br>70<br>0.5<br>0.9<br>4.0                | 656.5<br>6.2<br>50<br>0.6<br>1.2<br>3.7<br>10.2<br>8.1<br>1.0<br>35.4<br>1.0<br>35.4<br>0<br>47.0<br>647.0<br>647.0<br>647.0<br>647.0<br>0.4<br>0.9<br>3.0                                 | 656.0<br>10.5<br>N/A<br>0.7<br>1.5<br>7.8<br>14.1<br>N/A<br>1.0<br>N/A<br>1.0<br>N/A<br>646.9<br>646.9<br>646.9<br>9.7<br>N/A<br>0.8<br>1.4<br>7.8                       | 656.0<br>10.0<br>N/A<br>0.7<br>1.2<br>7.0<br>14.4<br>N/A<br>1.0<br>N/A<br><b>Cros</b><br><b>MY1</b><br>646.9<br>646.9<br>646.9<br>10.1<br>N/A<br>0.7<br>1.3<br>7.2 | 656.0<br>10.2<br>N/A<br>0.7<br>1.3<br>6.7<br>15.5<br>N/A<br>1.0<br>N/A<br>S Section<br>646.9<br>646.9<br>646.9<br>9.8<br>N/A<br>0.7<br>1.4<br>7.2                   | 656.0<br>9.4<br>N/A<br>0.7<br>1.3<br>6.5<br>13.5<br>N/A<br>1.0<br>N/A<br>0.7<br>1.3<br>646.9<br>646.9<br>646.9<br>10.0<br>N/A<br>0.7<br>1.3<br>6.6     | 656.2<br>10.7<br>N/A<br>0.7<br>1.7<br>8.0<br>14.4<br>N/A<br>1.0<br>N/A<br>0.7<br>646.9<br>646.9<br>646.9<br>9.8<br>N/A<br>0.7<br>1.4<br>7.1  | 656.0<br>8.1<br>N/A<br>0.9<br>1.7<br>7.2<br>9.2<br>N/A<br>1.0<br>N/A<br>MY7<br>646.9<br>646.9<br>646.9<br>10.6<br>N/A<br>0.7<br>1.4<br>7.7         | 615.8<br>8.1<br>200<br>0.6<br>1.8<br>5.0<br>13.2<br>24.8<br>1.0<br>18.3<br>4<br>602.9<br>602.9<br>602.9<br>602.9<br>7.1<br>50<br>0.5<br>0.7<br>3.4                                                             | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.6<br>10.1<br>24.4<br>1.0<br>42.1<br>42.1<br>602.9<br>602.9<br>602.9<br>7.0<br>50<br>0.5<br>50<br>0.5<br>50<br>9.9<br>3.8                          | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.5<br>10.4<br>24.4<br>1.0<br>28.5<br><b>Sectio</b><br><b>MY2</b><br>602.9<br>602.9<br>602.9<br>602.9<br>6.8<br>50<br>0.5<br>0.9<br>3.5 | 615.8<br>8.9<br>200<br>0.8<br>1.8<br>6.7<br>11.7<br>22.6<br>1.0<br>22.6<br>n 15 (R<br>MY3<br>602.9<br>602.9<br>602.9<br>602.9<br>6.5<br>0<br>0.5<br>0.8<br>3.3 | 615.7<br>8.5<br>200<br>0.8<br>1.7<br>6.9<br>10.4<br>23.5<br>1.2<br>24.7<br><b>1</b> .2<br>24.7<br><b>6</b> .9<br>603.0<br>603.0<br>603.0<br>603.0<br>6.5<br>0<br>0.6<br>1.1<br>3.9              | 615.7<br>9.7<br>200<br>0.7<br>1.8<br>7.0<br>13.5<br>20.5<br>1.2<br>42.6<br>U<br>802.9<br>602.9<br>602.9<br>602.9<br>5.2<br>50<br>0.5<br>1.0<br>2.8                                               | 615.1<br>10.6<br>N/A<br>1.2<br>2.7<br>12.3<br>9.1<br>N/A<br>1.0<br>N/A<br>1.0<br>N/A<br>602.4<br>602.4<br>602.4<br>602.4<br>602.4<br>5.8                                                                                                          | 615.1<br>10.5<br>N/A<br>1.2<br>2.6<br>13.2<br>8.4<br>N/A<br>1.0<br>N/A<br>1.0<br>N/A<br>Cross S<br>MY1<br>602.4<br>602.4<br>9.5<br>N/A<br>0.6<br>1.3<br>5.5              | 615.1<br>615.1<br>10.5<br>N/A<br>1.2<br>2.6<br>13.1<br>8.4<br>N/A<br>1.0<br>N/A<br>1.0<br>N/A<br><b>5.8</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 615.1<br>615.1<br>10.8<br>N/A<br>1.1<br>2.5<br>12.4<br>9.4<br>N/A<br>1.0<br>N/A<br>6 (Pool<br>MY3<br>602.4<br>602.4<br>9.9<br>N/A<br>0.6<br>1.3<br>5.7  | 615.1<br>615.1<br>12.0<br>N/A<br>1.1<br>2.8<br>13.0<br>1.0<br>N/A<br>1.0<br>N/A<br>602.4<br>602.4<br>602.4<br>602.4<br>9.0<br>N/A<br>0.6<br>1.4<br>5.2        | 615.1<br>615.1<br>11.6<br>N/A<br>1.2<br>2.5<br>13.4<br>10.1<br>N/A<br>1.0<br>N/A<br>1.0<br>N/A<br>602.4<br>602.4<br>8.7<br>N/A<br>0.7<br>1.7<br>5.9                         |
| Low Bank Elevation (ft)<br>Bankfull Width (ft)<br>Bankfull Man Depth (ft)<br>Bankfull Man Depth (ft)<br>Bankfull Cross Sectional Area (ft <sup>2</sup> )<br>Bankfull Cross Sectional Area (ft <sup>2</sup> )<br>Bankfull Bank Height Ratio <sup>2</sup><br>Bankfull Bank Height Ratio <sup>2</sup><br>Bankfull Elevation (ft)<br>Low Bank Elevation (ft)<br>Bankfull Width (ft)<br>Floodprone Width (ft)<br>Bankfull Mean Depth (ft)<br>Bankfull Width/Depth Ratio | 656.4<br>8.0<br>50<br>0.5<br>0.9<br>4.0<br>15.9<br>6.3<br>1.0<br>18.0<br><b>Base</b><br>647.1<br>647.1<br>647.1<br>7.7<br>70<br>0.5<br>0.7<br>3.5 | 656.4<br>7.3<br>50<br>0.5<br>0.9<br>13.7<br>6.8<br>1.0<br>17.8<br><b>Cross Se</b><br><b>MY1</b><br>647.1<br>647.1<br>647.1<br>647.1<br>647.1<br>647.1<br>9.5<br>0.9<br>3.6<br>16.9 | 656.4<br>7.2<br>50<br>0.5<br>0.8<br>13.8<br>13.8<br>6.9<br>1.0<br>25.2<br>ection 1<br>MY2<br>647.1<br>647.1<br>7.7<br>70<br>0.4<br>0.8<br>3.2<br>18.3 | 656.4<br>6.7<br>50<br>0.5<br>0.8<br>3.3<br>13.4<br>7.5<br>1.0<br>38.8<br>647.1<br>647.1<br>7.4<br>647.1<br>7.4<br>647.1<br>0.4<br>0.4<br>0.4<br>0.4<br>0.4<br>0.2,7<br>20.6 | 656.5<br>6.6<br>50<br>0.6<br>1.2<br>4.0<br>10.9<br>7.8<br>1.0<br>20.9<br><b>MY5</b><br>647.1<br>647.1<br>8.7<br>70<br>0.5<br>0.9<br>4.0<br>19.2 | 656.5<br>6.2<br>50<br>0.6<br>1.2<br>3.7<br>10.2<br>8.1<br>1.0<br>35.4<br>4<br>.0<br>0<br>35.4<br>0<br>0<br>70<br>647.0<br>647.0<br>647.0<br>647.0<br>9.0<br>4<br>0.4<br>0.9<br>3.0<br>21.5 | 656.0<br>10.5<br>N/A<br>0.7<br>1.5<br>7.8<br>14.1<br>N/A<br>1.0<br>N/A<br>1.0<br>N/A<br>1B<br>Base<br>646.9<br>646.9<br>646.9<br>9.7<br>N/A<br>0.8<br>1.4<br>7.8<br>12.1 | 656.0<br>10.0<br>N/A<br>0.7<br>1.2<br>7.0<br>14.4<br>N/A<br>1.0<br>N/A<br><b>Cros</b><br><b>MY1</b><br>646.9<br>646.9<br>10.1<br>N/A<br>0.7<br>1.3<br>7.2<br>14.2  | 656.0<br>10.2<br>N/A<br>0.7<br>1.3<br>6.7<br>15.5<br>N/A<br>1.0<br>N/A<br>5 Sectid<br>646.9<br>646.9<br>9.8<br>N/A<br>0.7<br>1.4<br>7.2<br>13.5                     | 656.0<br>9.4<br>N/A<br>0.7<br>1.3<br>6.5<br>13.5<br>N/A<br>1.0<br>N/A<br>0.7<br>1.0<br>N/A<br>0.7<br>646.9<br>10.0<br>N/A<br>0.7<br>1.3<br>6.6<br>15.0 | 655.2<br>10.7<br>N/A<br>0.7<br>1.7<br>8.0<br>N/A<br>1.0<br>N/A<br>646.9<br>646.9<br>646.9<br>9.8<br>N/A<br>0.7<br>1.4<br>7.1<br>1.3.7        | 656.0<br>8.1<br>N/A<br>0.9<br>1.7<br>7.2<br>9.2<br>9.2<br>N/A<br>1.0<br>N/A<br>646.9<br>646.9<br>646.9<br>10.6<br>N/A<br>0.7<br>1.4<br>7.7<br>14.6 | 615.8<br>8.1<br>200<br>0.6<br>1.8<br>5.0<br>13.2<br>24.8<br>1.0<br>13.2<br>24.8<br>1.0<br>13.2<br>24.8<br>602.9<br>602.9<br>602.9<br>7.1<br>50<br>602.9<br>7.1<br>50<br>0.5<br>0.5<br>0.5<br>0.5<br>1.5<br>1.5 | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.6<br>10.1<br>24.4<br>1.0<br>42.1<br><b>Cross</b><br><b>MY1</b><br>602.9<br>602.9<br>602.9<br>7.0<br>50<br>0.5<br>0.5<br>0.5<br>0.5<br>3.8<br>12.9 | 615.8<br>8.2<br>200<br>0.8<br>1.9<br>6.5<br>10.4<br>24.4<br>1.0<br>28.5<br>5<br>602.9<br>602.9<br>602.9<br>602.9<br>602.9<br>6.8<br>50<br>0.5<br>0.5<br>0.5<br>0.5<br>13.5   | 615.8<br>8.9<br>200<br>0.8<br>1.8<br>6.7<br>11.7<br>22.6<br>1.0<br>22.6<br>MY3<br>602.9<br>6.0<br>50<br>0.5<br>0.5<br>0.5<br>0.8<br>3.3<br>13.5                | 615.7<br>8.5<br>200<br>0.8<br>1.7<br>6.9<br>10.4<br>23.5<br>1.2<br>24.7<br><b>iffle)</b><br><b>MY5</b><br>603.0<br>603.0<br>603.0<br>6.8<br>50<br>0.6<br>8.3<br>50<br>0.1<br>1.1<br>3.9<br>12.1 | 615.7<br>9.7<br>200<br>0.7<br>1.8<br>7.0<br>13.5<br>20.5<br>1.2<br>42.6<br>602.9<br>602.9<br>602.9<br>602.9<br>5.0<br>50<br>0.5<br>1.0<br>2.8<br>9.6                                             | 615.1<br>10.6<br>N/A<br>1.2<br>2.7<br>12.3<br>9.1<br>1.0<br>N/A<br>1.0<br>N/A<br>1.0<br>N/A<br>12<br><b>Base</b><br>602.4<br>602.4<br>602.4<br>9.5<br>N/A<br>1.3<br>5.8<br>15.5                                                                   | 615.1<br>10.5<br>N/A<br>1.2<br>2.6<br>13.2<br>8.4<br>N/A<br>1.0<br>N/A<br>Cross SC<br>MY1<br>602.4<br>602.4<br>602.4<br>602.4<br>9.5<br>N/A<br>0.6<br>1.3<br>5.5<br>16.3 | 615.1<br>615.1<br>10.5<br>N/A<br>2.6<br>13.1<br>8.4<br>N/A<br>1.0<br>N/A<br>1.0<br>N/A<br>602.4<br>602.4<br>602.4<br>9.9<br>N/A<br>0.6<br>1.3<br>5.8<br>16.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 615.1<br>615.1<br>10.8<br>N/A<br>1.1<br>2.5<br>12.4<br>9.4<br>N/A<br>1.0<br>N/A<br>602.4<br>602.4<br>9.9<br>N/A<br>602.4<br>5.7<br>1.3<br>5.7<br>17.0   | 615.1<br>615.1<br>12.0<br>N/A<br>1.1<br>2.8<br>13.0<br>N/A<br>1.0<br>N/A<br>1.0<br>N/A<br>602.4<br>602.4<br>9.0<br>N/A<br>0.6<br>6<br>0.4<br>4<br>5.2<br>15.3 | 615.1<br>615.1<br>11.6<br>N/A<br>1.2<br>2.5<br>13.4<br>10.1<br>N/A<br>1.0<br>N/A<br>1.0<br>N/A<br><b>MY7</b><br>602.4<br>602.4<br>602.4<br>8.7<br>N/A<br>0.7<br>5.9<br>12.8 |

<sup>1</sup>Entrenchment Ratio is the flood prone width divided by the bankfull width.

## Table 12a. Monitoring Data - Stream Reach Data Summary

Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 7 - 2021

UT1 Reach 2

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Parameter                                        | As-Built    | /Baseline     | M              | IY1             | N              | 1Y2              | N              | /IY3             | N              | 1Y5              | M              | Y7              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------|---------------|----------------|-----------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|-----------------|
| Bankfull Width (th)         10.2         10.4         9.9         10.2         9.7         10.5         9.2         10.9         9.7         12.0         9.4         11           Bankfull Mean Depth         0.6         0.09         0.6         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         60         100         10         10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | Min         | Max           | Min            | Max             | Min            | Max              | Min            | Max              | Min            | Max              | Min            | Max             |
| Histophy with (b)6010060100601006010060100601006060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060606060 <td>Dimension and Substrate - Riffle</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dimension and Substrate - Riffle                 |             |               |                |                 |                |                  |                |                  |                |                  |                |                 |
| Barkfull Mean Depth         0.6         0.9         0.6         0.7         0.5         0.7         0.6         0.7         0.6         0.7         0.6         0.7         0.6         0.7         0.6         0.7         0.6         0.7         0.6         0.7         0.6         0.7         0.6         0.7         0.6         0.7         0.6         0.7         0.6         0.7         0.6         0.7         0.6         0.7         0.6         0.7         0.6         0.7         0.6         0.7         0.6         0.7         0.6         0.7         0.6         0.6         0.6         0.6         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bankfull Width (ft)                              | 10.2        | 10.4          | 9.9            | 10.2            | 9.7            | 10.5             | 9.2            | 10.9             | 9.7            | 12.0             | 9.4            | 10.1            |
| Bankful Max 0ep<br>Bankful Cross Ectional Area (1)1.41.41.01.41.11.51.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Floodprone Width (ft)                            | 60          | 100           | 60             | 100             | 60             | 100              | 60             | 100              | 60             | 100              | 60             | 100             |
| Bankful Cross Sectional Area (th)     6.2     9.0     6.2     8.0     5.3     7.8     4.9     7.9     6.2     8.7     6.1     6.6       Midth/Depth Ratio     1.0     1.6.8     12.2     16.7     14.2     17.7     15.1     17.5     15.1     16.5     13.2     11.0       Bank Height Ratio     5.9     9.6     5.9     10.1     6.2     9.5     6.5     9.2     6.2     8.4     5.9     10.1       Bank Height Ratio     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0     1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bankfull Mean Depth                              | 0.6         | 0.9           | 0.6            | 0.8             | 0.5            | 0.7              | 0.5            | 0.7              | 0.6            | 0.7              | 0.6            | 0.7             |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bankfull Max Depth                               | 1.1         | 1.4           | 1.1            | 1.4             | 1.1            | 1.4              | 1.0            | 1.4              | 1.1            | 1.5              | 1.1            | 1.5             |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bankfull Cross Sectional Area (ft <sup>2</sup> ) | 6.2         | 9.0           | 6.2            | 8.0             | 5.3            | 7.8              | 4.9            | 7.9              | 6.2            | 8.7              | 6.1            | 6.2             |
| Bank Height Ratio         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Width/Depth Ratio                                | 12.0        | 16.8          | 12.2           | 16.7            | 14.2           | 17.7             | 15.1           | 17.5             | 15.1           | 16.5             | 13.2           | 16.9            |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Entrenchment Ratio <sup>1</sup>                  | 5.9         | 9.6           | 5.9            | 10.1            | 6.2            | 9.5              | 6.5            | 9.2              | 6.2            | 8.4              | 5.9            | 10.6            |
| Profile       Image: Marcine Marconce Marcine Marcine Marcine Marconce Marcine Marcin            | Bank Height Ratio <sup>2</sup>                   | 1           | 0             | 1              | 0               | 1              | 1.0              | :              | 1.0              | <1.0           | 1.0              | <1.0           | 1.0             |
| Riffle Length (t)       13.9       73.2       Image: constraint of the second                             | D50 (mm)                                         | 13.3        | 18.0          | 46.6           | 64.0            | 10.4           | 22.6             | 23.0           | 27.2             | 22.6           | 56.1             | 56.9           | 64.0            |
| Riffle Slope (ht/nt)       0.0078       0.0037       42.8       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Profile                                          |             | •             |                |                 |                | •                |                | •                |                |                  |                | •               |
| Pool Length (ft)       17.2       42.8       Image: Constraint of the sector of the                              | Riffle Length (ft)                               | 13.9        | 73.2          |                |                 |                |                  |                |                  |                |                  |                |                 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                  | 0.0078      | 0.0317        |                |                 |                |                  |                |                  |                |                  |                |                 |
| Pool Spacing (ft)       31       78       Image: Space of the s                              | Pool Length (ft)                                 | 17.2        | 42.8          |                |                 |                |                  |                |                  |                |                  |                |                 |
| Pool Volume (ft <sup>3</sup> )       Image: Second secon | Pool Max Depth (ft)                              | 1.6         | 3.7           |                |                 |                |                  |                |                  |                |                  |                |                 |
| Pattern         Image: Channel Beltwidth (ft)         20         68         Image: Channel Beltwidth (ft)         20         68         Image: Channel Beltwidth (ft)         20         68         Image: Channel Beltwidth (ft)         18         26         Image: Channel Beltwidth (ft)         18         2.5         Image: Channel Beltwidth (ft)         18         2.5         Image: Channel Beltwidth (ft)         18         2.5         Image: Channel Beltwidth (ft)         17         Image: Channel Beltwidth (ft)         1.137         Image: Channel Belt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pool Spacing (ft)                                | 31          | 78            |                |                 |                |                  |                |                  |                |                  |                |                 |
| Channel Beltwidth (t)       20       68       Image: Construct of the second                              | Pool Volume (ft <sup>3</sup> )                   |             |               |                |                 |                |                  |                |                  |                |                  |                |                 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pattern                                          |             |               |                |                 |                |                  |                |                  |                |                  |                |                 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Channel Beltwidth (ft)                           | 20          | 68            |                |                 |                |                  |                |                  |                |                  |                |                 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Radius of Curvature (ft)                         | 18          | 26            |                |                 |                |                  |                |                  |                |                  |                |                 |
| Meander Width Ratio       2.0       6.5       Image: Constraint of the sector of th                              | Rc:Bankfull Width (ft/ft)                        | 1.8         | 2.5           |                |                 |                |                  |                |                  |                |                  |                |                 |
| Additional Reach Parameters         Image: Construction of the constructio   | Meander Wave Length (ft)                         | 70          | 120           |                |                 |                |                  |                |                  |                |                  |                |                 |
| Rosgen Classification       C4       Image: C4<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Meander Width Ratio                              | 2.0         | 6.5           |                |                 |                |                  |                |                  |                |                  |                |                 |
| Channel Thalweg Length (ft)       1,137       Image Length (ft)       1,137       Image Length (ft)       Image Length (ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Additional Reach Parameters                      |             |               |                |                 |                |                  |                |                  |                |                  |                |                 |
| Sinusity (ft)       1.2       Image: Constraint of the synthesis of the synthesynthesis of the synthesynthesis of the synthesynthesynthesis of t                    | Rosgen Classification                            | (           | 24            |                |                 |                |                  |                |                  |                |                  |                |                 |
| Water Surface Slope (H/ft)         0.0111         Image: Constraint of the state             | Channel Thalweg Length (ft)                      | 1,          | 137           |                |                 |                |                  |                |                  |                |                  |                |                 |
| Bankfull Slope (ft/ft)         0.0096         Image: constraint of the state of t            | Sinuosity (ft)                                   | 1           | 2             |                |                 |                |                  |                |                  |                |                  |                |                 |
| Ri%/Ru%/P%/G%/S%         Image: Comparison of the co   | Water Surface Slope (ft/ft)                      | 0.0         | 0111          |                |                 |                |                  |                |                  |                |                  |                |                 |
| SC%/Sa%/G%/C%/B%/Be%         End                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bankfull Slope (ft/ft)                           | 0.0         | 0096          |                |                 |                |                  |                |                  |                |                  |                |                 |
| d16/d35/d50/d84/d95/d100 SC/SC/SC/41.3/79.2/128.0 SC/0.28/9.9/93.6/145.5/180.0 0.56\2.57\4.8\64.0\117.2\512.0 0.52\2.43\4.6\34.3\102.1\180.0 SC/1.12/14.1/98.3/180.0/1024.0 SC/0.43/5.9/138.1/220.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ri%/Ru%/P%/G%/S%                                 |             |               |                |                 |                |                  |                |                  |                |                  |                |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SC%/Sa%/G%/C%/B%/Be%                             |             |               |                |                 |                |                  |                |                  |                |                  |                |                 |
| % of Reach with Eroding Banks 0% 0% 0% 0% 0% 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d16/d35/d50/d84/d95/d100                         | SC/SC/SC/41 | .3/79.2/128.0 | SC/0.28/9.9/93 | 3.6/145.5/180.0 | 0.56\2.57\4.8\ | 64.0\117.2\512.0 | 0.52\2.43\4.6\ | 34.3\102.1\180.0 | SC/1.12/14.1/9 | 8.3/180.0/1024.0 | SC/0.43/5.9/13 | 8.1/220.1/362.0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | % of Reach with Eroding Banks                    | (           | )%            | C              | )%              | (              | 0%               | (              | 0%               | (              | 0%               | 0              | %               |

<sup>1</sup>Entrenchment Ratio is the flood prone width divided by the bankfull width.

## Table 12b. Monitoring Data - Stream Reach Data Summary

Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 7 - 2021

UT1 Reach 5

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        | a av/7                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------|
| Dimension and Substrate - Riffle         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MY5                    | MY7                                     |
| Bankfull Width (ft)         11.9         13.6         11.9         15.2         11.8         16.0         12.0         15.1         10           Floodprone Width (ft)         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Min Ma                 | 1ax Min Max                             |
| Floodprone Width (ft)         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200         200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                        |                                         |
| Bankfull Max Depth         0.8         0.9         0.8         0.8         0.8         0.8         0.7         0.8         0.0           Bankfull Max Depth         1.3         1.6         1.5         1.7         1.4         1.8         1.3         1.8         1.1           Bankfull Cross Sectional Area (tr)         9.1         11.9         10.1         12.6         9.3         12.5         8.8         12.5         8.8         12.5         8.8         12.5         8.8         12.5         8.8         12.5         8.8         12.5         8.8         12.5         8.8         12.5         16.3         18.2         14           Entrenchment Ratio         14.7         16.8         13.1         16.8         12.5         17.0         13.3         16.7         13           Bank Height Ratio         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0         1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.9 15.               |                                         |
| Bankfull Max Depth         1.3         1.6         1.5         1.7         1.4         1.8         1.3         1.8         1.1           Bankfull Cross Sectional Area (ft <sup>2</sup> )         9.1         11.9         10.1         12.6         9.3         12.5         8.8         12.5         8.8         12.5         8.8         12.5         8.8         12.5         8.8         12.5         8.8         12.5         8.8         12.5         8.8         12.5         8.8         12.5         18.2         14.4           Entrenchment Ratio <sup>2</sup> 14.7         16.8         13.1         16.8         12.5         17.0         13.3         16.7         13           Bank Height Ratio <sup>2</sup> 1.0         1.0         1.0         1.0         1.0         1.0 <dd><dd><dd><dd><dd><dd></dd>         1.0         <dd><dd><dd><dd><dd><dd><dd><dd><dd></dd></dd></dd></dd></dd></dd></dd></dd></dd></dd></dd></dd></dd></dd>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200                    | 200                                     |
| Bankfull Cross Sectional Area (ft <sup>+</sup> )         9.1         11.9         10.1         12.6         9.3         12.5         8.8         12.5         8.8           Width/Oepth Ratio         15.5         15.7         14.0         18.4         14.9         20.5         16.3         18.2         14           Entrenchment Ratio <sup>1</sup> 14.7         16.8         13.1         16.8         12.5         17.0         13.3         16.7         13           Bank Height Ratio <sup>2</sup> 1.0         1.0         1.0         1.0         1.0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0         .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        | 1.0 0.9 1.1                             |
| Width/Depth Ratio         15.5         15.7         14.0         18.4         14.9         20.5         16.3         18.2         14           Entrenchment Ratio         14.7         16.8         13.1         16.8         12.5         17.0         13.3         16.7         13           Bank Height Ratio <sup>2</sup> 1.0         1.0         1.0         1.0         1.0         <1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5 2.0                |                                         |
| Entrenchment Ratio       14.7       16.8       13.1       16.8       12.5       17.0       13.3       16.7       13         Bank Height Ratio       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.4 14.                |                                         |
| Bank Height Ratio <sup>2</sup> 1.0       1.0       1.0       1.0       .0       1.0       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10       .10<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.1 15.               | 5.9 13.3 13.8                           |
| Low Neigh Nei | 13.1 18.               | 8.4 13.9 17.1                           |
| Profile         Image: Constraint of the second          | <1.0 1.1               | 1.1 1.1                                 |
| Riffle Length (t)       23.7       81.3       Image: Constraint of the second                                    | 31.0 33.               | 3.5 41.8 82.6                           |
| Riffle Slope (ft/ft)       0.0090       0.0304       Image: constraint of the state of the                                    |                        |                                         |
| Pool Length (ft)         17.6         76.6         Image: Constraint of the sector of the se                            |                        |                                         |
| Pool Max Depth (ft)         2.0         4.9         Image: marked constraints of the second consecond constraints of the second consecond constraints                             |                        |                                         |
| Pool Spacing (ft)         35         103         Image: margin stress of the s                            |                        |                                         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                                         |
| Pattern         Image: Channel Beltwidth (ft)         34         72         Image: Channel Beltwidth (ft)         1.12         Image: Channel Beltwidth (ft)         1.2         Image: Channel Beltwidth (ft)         Image: Channel Beltwidth (ft)         1.2         Image: Channel Beltwidth (ft)         Image: Channel Beltwidth (ft)         Image: Channel Beltwidth (ft)         1.2         Image: Channel Beltwidth (ft)         Image: Channel Beltwidth (ft) <t< td=""><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                                         |
| Channel Beltwidth (ft)         34         72         Image: Construct of the system of the s                            |                        |                                         |
| Radius of Curvature (ft)         23         38         Image: Constraint of the second secon                            |                        |                                         |
| Rc:Bankfull Width (ft/ft)       1.9       2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                                         |
| Meander Wave Length (ft)         97         160         Image: Constraint of the second seco                            |                        |                                         |
| Meander Width Ratio         2.9         5.3         Image: Constraint of the second                              |                        |                                         |
| Additional Reach Parameters         Image: C4         Image:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                        |                                         |
| Rosgen Classification         C4         Image: Classification         Cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                                         |
| Channel Thalweg Length (ft)     1,535     Image: Channel Thalweg Length (ft)     1.2       Sinuosity (ft)     1.2     Image: Channel Thalweg Length (ft)     Image: Channel Thalweg Length (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                                         |
| Sinuosity (ft) 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                                         |
| Water Surface Slope (ft/ft)         0.0122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                        |                                         |
| Bankfull Slope (ft/ft) 0.0104 00000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                        |                                         |
| Ri%/Ru%/P%/G%/S%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                        |                                         |
| SC%/Sa%/G%/C%/B%/Be%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                         |
| d16/d35/d50/d84/d95/d100 SC/SC/0.11/45.0/104.7/180.0 SC\4.47\20.1\74.9\128.0\362.0 0.18\4.00\20.7\75.9\139.4\512.0 SC\0.50\17.1\70.2\104.7\180.0 SC/0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C/0.88/14.8/97.3/168.1 | 1/362.0 0.31/7.1/18.2/145.5/234.4/362.0 |
| % of Reach with Eroding Banks         0%         0%         0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0%                     | 0%                                      |

<sup>1</sup>Entrenchment Ratio is the flood prone width divided by the bankfull width.

## Table 12c. Monitoring Data - Stream Reach Data Summary

Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 7 - 2021

#### UT1A Reach 1

| Parameter                                        | As-Built/Baseline |        |                                | MY1  | N                              | IY2  | MY3                          |     |                           | MY5 |                               | MY7 |  |
|--------------------------------------------------|-------------------|--------|--------------------------------|------|--------------------------------|------|------------------------------|-----|---------------------------|-----|-------------------------------|-----|--|
|                                                  | Min               | Max    | Min                            | Max  | Min                            | Max  | Min                          | Max | Min                       | Max | Min                           | Max |  |
| Dimension and Substrate - Riffle                 |                   |        |                                |      |                                | -    |                              |     |                           |     |                               |     |  |
| Bankfull Width (ft)                              | 8.0               |        | 7.3                            |      | 7.2                            |      | 6.7                          |     | 6.6                       |     | 6.2                           |     |  |
| Floodprone Width (ft)                            | !                 | 50     | 50                             |      | 50                             |      | 50                           |     | 50                        |     | 50                            |     |  |
| Bankfull Mean Depth                              |                   | ).5    | 0.5                            |      | 0.5                            |      | 0.5                          |     | 0.6                       |     | 0.6                           |     |  |
| Bankfull Max Depth                               |                   | ).9    | 0.9                            |      | 0.8                            |      | 0.8                          |     | 1.2                       |     | 1.2                           |     |  |
| Bankfull Cross Sectional Area (ft <sup>2</sup> ) | 4                 | ł.0    | 3.9                            |      | 3.8                            |      | 3                            | 1.3 | 4                         | .0  | 3                             | .7  |  |
| Width/Depth Ratio                                | 1                 | 5.9    |                                | 13.7 | 1                              | 13.8 |                              | 3.4 | 10                        | 0.9 | 10.2                          |     |  |
| Entrenchment Ratio <sup>1</sup>                  | 6                 | 5.3    |                                | 6.8  | 6.9                            |      | 7                            | .5  | 7                         | .8  | 7.8                           |     |  |
| Bank Height Ratio <sup>2</sup>                   | 1                 | 0      |                                | 1.0  | 1.0                            |      | 1                            | 1.0 |                           | .0  | 1.0                           |     |  |
| D50 (mm)                                         | 1                 | 8.0    | 17.8                           |      | 25.2                           |      | 38.8                         |     | 20.9                      |     | 35.4                          |     |  |
| Profile                                          |                   |        |                                |      |                                |      |                              |     |                           |     |                               |     |  |
| Riffle Length (ft)                               | 15.5              | 41.97  |                                |      |                                |      |                              |     |                           |     |                               |     |  |
| Riffle Slope (ft/ft)                             | 0.0077            | 0.0505 |                                |      |                                |      |                              |     |                           |     |                               |     |  |
| Pool Length (ft)                                 | 5.4               | 52.2   |                                |      |                                |      |                              |     |                           |     |                               |     |  |
| Pool Max Depth (ft)                              | 1.6               | 3.5    |                                |      |                                |      |                              |     |                           |     |                               |     |  |
| Pool Spacing (ft)                                | 20                | 85     |                                |      |                                |      |                              |     |                           |     |                               |     |  |
| Pool Volume (ft <sup>3</sup> )                   |                   |        |                                |      |                                |      |                              |     |                           |     |                               |     |  |
| Pattern                                          |                   |        |                                | -    |                                |      |                              | -   |                           |     |                               |     |  |
| Channel Beltwidth (ft)                           | 24                | 60     |                                |      |                                |      |                              |     |                           |     |                               |     |  |
| Radius of Curvature (ft)                         | 14                | 23     |                                |      |                                |      |                              |     |                           |     |                               |     |  |
| Rc:Bankfull Width (ft/ft)                        | 1.8               | 2.9    |                                |      |                                |      |                              |     |                           |     |                               |     |  |
| Meander Wave Length (ft)                         | 70                | 112    |                                |      |                                |      |                              |     |                           |     |                               |     |  |
| Meander Width Ratio                              | 3.0               | 7.5    |                                |      |                                |      |                              |     |                           |     |                               |     |  |
| Additional Reach Parameters                      |                   |        |                                |      |                                |      |                              |     |                           |     |                               |     |  |
| Rosgen Classification                            | (                 | 24     |                                |      |                                |      |                              |     |                           |     |                               |     |  |
| Channel Thalweg Length (ft)                      |                   | 57     |                                |      |                                |      |                              |     |                           |     |                               |     |  |
| Sinuosity (ft)                                   |                   | 2      |                                |      |                                |      |                              |     |                           |     |                               |     |  |
| Water Surface Slope (ft/ft)                      | 0.0126            |        |                                |      |                                |      |                              |     |                           |     |                               |     |  |
| Bankfull Slope (ft/ft)                           | 0.0137            |        |                                |      |                                |      |                              |     |                           |     |                               |     |  |
| Ri%/Ru%/P%/G%/S%                                 |                   |        |                                |      |                                |      |                              |     |                           |     |                               |     |  |
| SC%/Sa%/G%/C%/B%/Be%                             |                   |        |                                |      |                                |      |                              |     |                           |     |                               |     |  |
| d16/d35/d50/d84/d95/d100                         | SC/SC/1.41/33     |        | 0.16\2.24\11.0\42.0\73.4\180.0 |      | 0.50\6.01\15.2\52.1\75.9\512.0 |      | SC\0.95\17.3\56.3\83.4\180.0 |     | SC/SC/2.4/39.3/85.0/256.0 |     | SC/0.76/19.5/79.7/128.0/256.0 |     |  |
| % of Reach with Eroding Banks                    | (                 | )%     |                                | 0%   | 0%                             |      | 0%                           |     | 0%                        |     | 0%                            |     |  |

<sup>1</sup>Entrenchment Ratio is the flood prone width divided by the bankfull width.

## Table 12d. Monitoring Data - Stream Reach Data Summary

Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 7 - 2021

#### UT1A Reach 4

| Parameter                                        | As-Built/Baseline |        | Baseline MY1 MY2 MY3 |      | MY5  |                                 | MY7 |                                 |      |     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------|-------------------|--------|----------------------|------|------|---------------------------------|-----|---------------------------------|------|-----|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  | Min               | Max    | Min                  | Max  | Min  | Max                             | Min | Max                             | Min  | Max | Min             | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dimension and Substrate - Riffle                 |                   |        |                      |      |      |                                 |     |                                 | ·    |     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Bankfull Width (ft)                              | 8                 | 3.1    | 8.2                  |      | 8.2  |                                 | 8.9 |                                 | 8.5  |     | 9.7             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Floodprone Width (ft)                            | 2                 | 200    | 200                  |      | 200  |                                 | 200 |                                 | 200  |     | 200             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Bankfull Mean Depth                              | (                 | 0.6    | 0.8                  |      | 0.8  |                                 | 0.8 |                                 | 0.8  |     | 0.7             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Bankfull Max Depth                               |                   | 1.8    | 1.9                  |      | 1.9  |                                 | 1.8 |                                 | 1.7  |     | 1.8             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Bankfull Cross Sectional Area (ft <sup>2</sup> ) |                   | 5.0    | 6.6                  |      | 6.5  |                                 |     | 6.7                             |      | 6.9 |                 | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Width/Depth Ratio                                | 1                 | 3.2    |                      | 10.1 | 10.4 |                                 | 1   | .1.7                            | 1    | 0.4 | 13.5            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Entrenchment Ratio <sup>1</sup>                  | 2                 | 4.8    |                      | 24.4 | 24.4 |                                 | 2   | 2.6                             | 2    | 3.5 | 20.5            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Bank Height Ratio <sup>2</sup>                   | 1                 | 1.0    |                      | 1.0  | 1    | 0                               | :   | 1.0                             | 1    | L.O | 1.2             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| D50 (mm)                                         | 1                 | 8.3    |                      | 42.1 | 2    | 8.5                             | 2   | 2.6                             | 24.7 |     | 42.6            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Profile                                          |                   |        |                      |      |      |                                 |     |                                 |      |     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Riffle Length (ft)                               | 20.5              | 51.9   |                      |      |      |                                 |     |                                 |      |     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Riffle Slope (ft/ft)                             | 0.0109            | 0.0449 |                      |      |      |                                 |     |                                 |      |     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Pool Length (ft)                                 | 9.1               | 35.5   |                      |      |      |                                 |     |                                 |      |     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Pool Max Depth (ft)                              | 1.4               | 3.1    |                      |      |      |                                 |     |                                 |      |     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Pool Spacing (ft)                                | 45                | 82     |                      |      |      |                                 |     |                                 |      |     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Pool Volume (ft <sup>3</sup> )                   |                   |        |                      |      |      |                                 |     |                                 |      |     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Pattern                                          |                   |        |                      |      |      | •                               |     | •                               |      |     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Channel Beltwidth (ft)                           | 35                | 55     |                      |      |      |                                 |     |                                 |      |     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Radius of Curvature (ft)                         | 15                | 23     |                      |      |      |                                 |     |                                 |      |     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Rc:Bankfull Width (ft/ft)                        | 1.9               | 2.8    |                      |      |      |                                 |     |                                 |      |     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Meander Wave Length (ft)                         | 96                | 117    |                      |      |      |                                 |     |                                 |      |     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Meander Width Ratio                              | 4.3               | 6.8    |                      |      |      |                                 |     |                                 |      |     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Additional Reach Parameters                      |                   |        |                      |      |      |                                 |     |                                 |      |     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Rosgen Classification                            |                   | C4     |                      |      |      |                                 |     |                                 |      |     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Channel Thalweg Length (ft)                      |                   | 666    |                      |      |      |                                 |     |                                 |      |     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sinuosity (ft)                                   |                   | 1.2    |                      |      |      |                                 |     |                                 |      |     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Water Surface Slope (ft/ft)                      | N/A               |        |                      |      |      |                                 |     |                                 |      |     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Bankfull Slope (ft/ft)                           | 0.0               | 0129   |                      |      |      |                                 |     |                                 |      |     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ri%/Ru%/P%/G%/S%                                 |                   |        |                      |      |      |                                 |     |                                 |      |     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SC%/Sa%/G%/C%/B%/Be%                             |                   |        |                      |      |      |                                 |     |                                 |      |     |                 | and the second se |
| d16/d35/d50/d84/d95/d100                         | SC/SC/0.25/26     |        |                      |      |      | 0.14\0.63\11.4\53.2\106.9\180.0 |     | 0.30/1.05/9.89/80.3/151.8/512.0 |      |     | 1.2/169.2/362.0 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| % of Reach with Eroding Banks                    | (                 | 0%     |                      | 0%   | 0    | )%                              | 0%  |                                 | 0%   |     | 0%              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

<sup>1</sup>Entrenchment Ratio is the flood prone width divided by the bankfull width.

## Table 12e. Monitoring Data - Stream Reach Data Summary

Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 7 - 2021

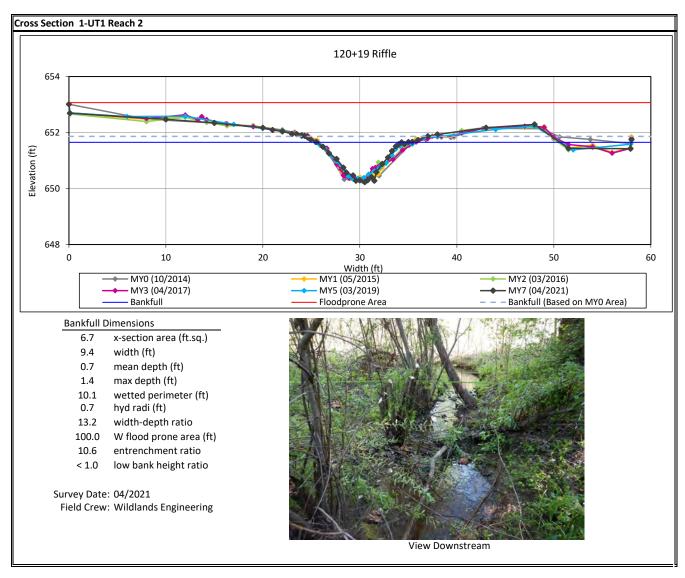
UT1B

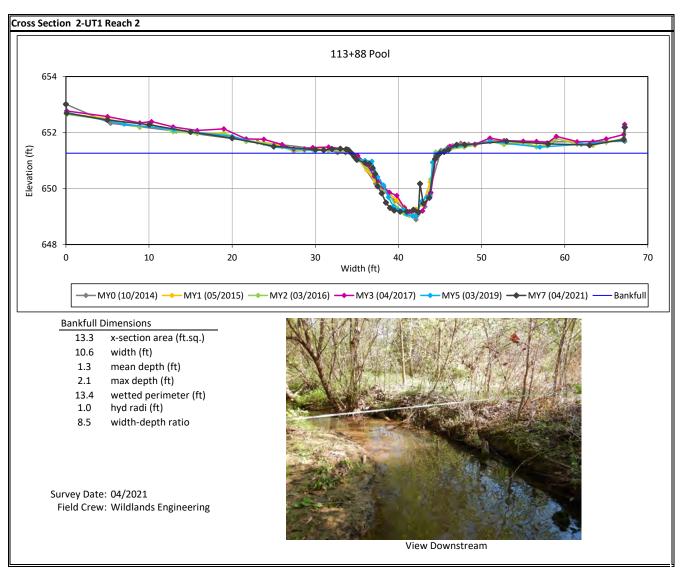
| Parameter                                        | As-Built/Baseline |              |             | MY1              | MY2 MY3      |                 | /IY3          | MY5              |                 | MY7             |               |                |  |
|--------------------------------------------------|-------------------|--------------|-------------|------------------|--------------|-----------------|---------------|------------------|-----------------|-----------------|---------------|----------------|--|
|                                                  | Min               | Min Max      |             | Max              | Min          | Max             | Min           | Max              | Min             | Max             | Min           | Max            |  |
| Dimension and Substrate - Riffle                 |                   |              |             |                  |              | •               |               |                  |                 |                 |               |                |  |
| Bankfull Width (ft)                              | 7.7               |              | 7.8         |                  | 7.7          |                 | 7.4           |                  | 8.7             |                 | 8.0           |                |  |
| Floodprone Width (ft)                            |                   | 70           | 70          |                  | 70           |                 | 70            |                  | 70              |                 | 70            |                |  |
| Bankfull Mean Depth                              | C                 | ).5          | 0.5         |                  | 0.4          |                 | 0.4           |                  | 0.5             |                 | 0.4           |                |  |
| Bankfull Max Depth                               | C                 | ).7          |             | 0.9              | 0.8          |                 | 0.8           |                  | 0.9             |                 | 0.9           |                |  |
| Bankfull Cross Sectional Area (ft <sup>2</sup> ) | 3                 | 8.5          |             | 3.6              | 3.2          |                 |               | 2.7              |                 | 4.0             |               | 3.0            |  |
| Width/Depth Ratio                                | 1                 | 7.0          |             | 16.9             | 18.3         |                 | 2             | 20.6             |                 | 19.2            |               | 21.5           |  |
| Entrenchment Ratio <sup>1</sup>                  | g                 | 9.1          |             | 9.0              |              | 9.1             |               | 9.4              |                 | .0              | 8.8           |                |  |
| Bank Height Ratio <sup>2</sup>                   | 1                 | 0            |             | 1.0              | 1.0          |                 |               | 1.0              |                 | .1              | <1.0          |                |  |
| D50 (mm)                                         | 2                 | 1.3          | 43.9        |                  | 26.9         |                 | 23.2          |                  | 72.7            |                 | 57.6          |                |  |
| Profile                                          |                   |              |             |                  |              |                 |               |                  |                 |                 |               |                |  |
| Riffle Length (ft)                               | 12.1              | 24.4         |             |                  |              |                 |               |                  |                 |                 |               |                |  |
| Riffle Slope (ft/ft)                             | 0.0219            | 0.0425       |             |                  |              |                 |               |                  |                 |                 |               |                |  |
| Pool Length (ft)                                 | 11.9              | 30.9         |             |                  |              |                 |               |                  |                 |                 |               |                |  |
| Pool Max Depth (ft)                              | 1.7               | 2.5          |             |                  |              |                 |               |                  |                 |                 |               |                |  |
| Pool Spacing (ft)                                | 30                | 45           |             |                  |              |                 |               |                  |                 |                 |               |                |  |
| Pool Volume (ft <sup>3</sup> )                   |                   |              |             |                  |              |                 |               |                  |                 |                 |               |                |  |
| Pattern                                          |                   |              |             |                  |              |                 |               |                  |                 |                 |               |                |  |
| Channel Beltwidth (ft)                           | 25                | 40           |             |                  |              |                 |               |                  |                 |                 |               |                |  |
| Radius of Curvature (ft)                         | 14                | 20           |             |                  |              |                 |               |                  |                 |                 |               |                |  |
| Rc:Bankfull Width (ft/ft)                        | 1.8               | 2.6          |             |                  |              |                 |               |                  |                 |                 |               |                |  |
| Meander Wave Length (ft)                         | 60                | 72           |             |                  |              |                 |               |                  |                 |                 |               |                |  |
| Meander Width Ratio                              | 3.2               | 5.2          |             |                  |              |                 |               |                  |                 |                 |               |                |  |
| Additional Reach Parameters                      |                   |              |             | •                |              | •               |               |                  |                 |                 |               | •              |  |
| Rosgen Classification                            | (                 | 24           |             |                  |              |                 |               |                  |                 |                 |               |                |  |
| Channel Thalweg Length (ft)                      | 2                 | 32           |             |                  |              |                 |               |                  |                 |                 |               |                |  |
| Sinuosity (ft)                                   | 1                 | 3            |             |                  |              |                 |               |                  |                 |                 |               |                |  |
| Water Surface Slope (ft/ft)                      | 0.0095            |              |             |                  |              |                 |               |                  |                 |                 |               |                |  |
| Bankfull Slope (ft/ft)                           | 0.0               | )181         |             |                  |              |                 |               |                  |                 |                 |               |                |  |
| Ri%/Ru%/P%/G%/S%                                 |                   |              |             |                  |              |                 |               |                  |                 |                 |               |                |  |
| SC%/Sa%/G%/C%/B%/Be%                             |                   |              |             |                  |              |                 |               |                  |                 |                 |               |                |  |
| d16/d35/d50/d84/d95/d100                         | SC/SC/SC/19       | .5/40.2/90.0 | SC\0.71\5.6 | 64.0\107.3\180.0 | SC\0.40\3.3\ | 40.2\95.4\128.0 | SC\0.62\2.5\6 | 52.2\144.6\180.0 | SC/2.00/14.8/10 | 2.7/139.4/256.0 | SC/0.1/1.2/81 | .0/122.5/256.0 |  |
| % of Reach with Eroding Banks                    | (                 | )%           |             | 0%               | 0%           |                 | 0%            |                  | 0%              |                 | 0%            |                |  |

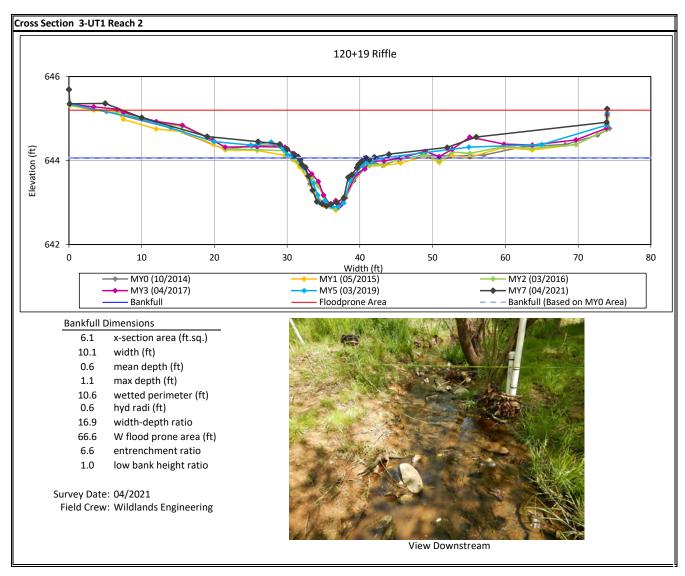
<sup>1</sup>Entrenchment Ratio is the flood prone width divided by the bankfull width.

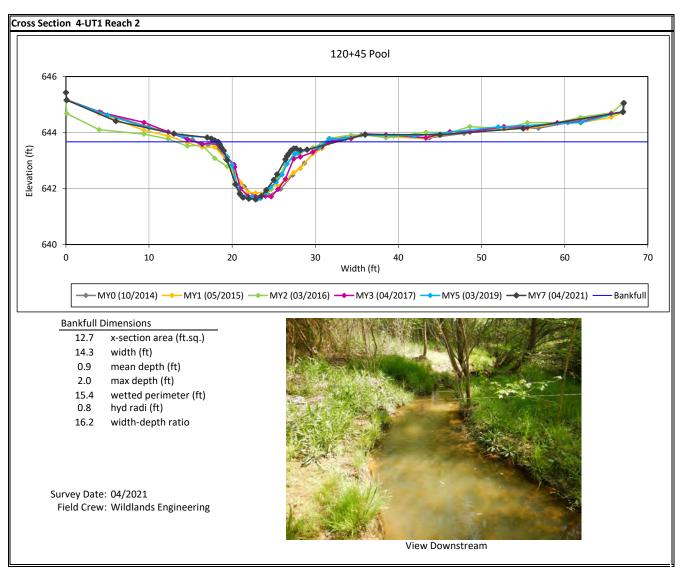
## Table 12f. Monitoring Data - Stream Reach Data Summary

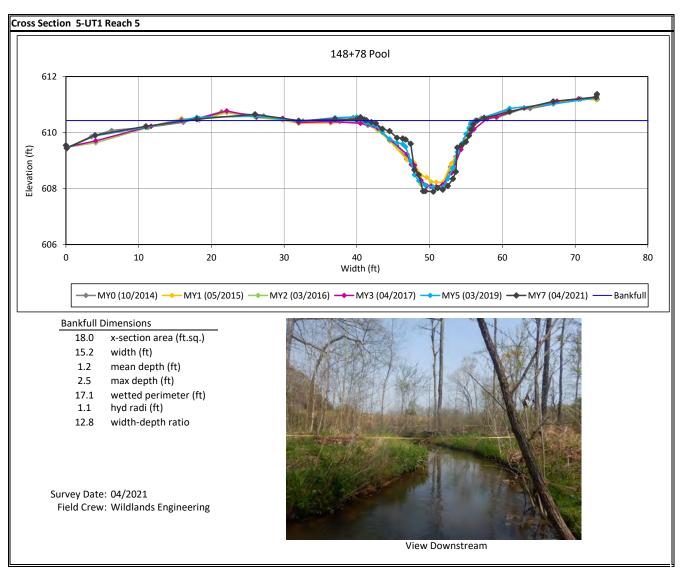
Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 7 - 2021

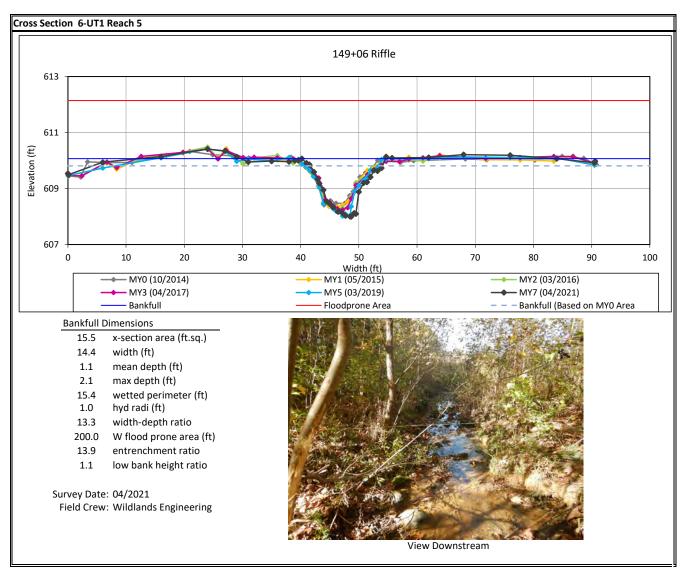

UT2

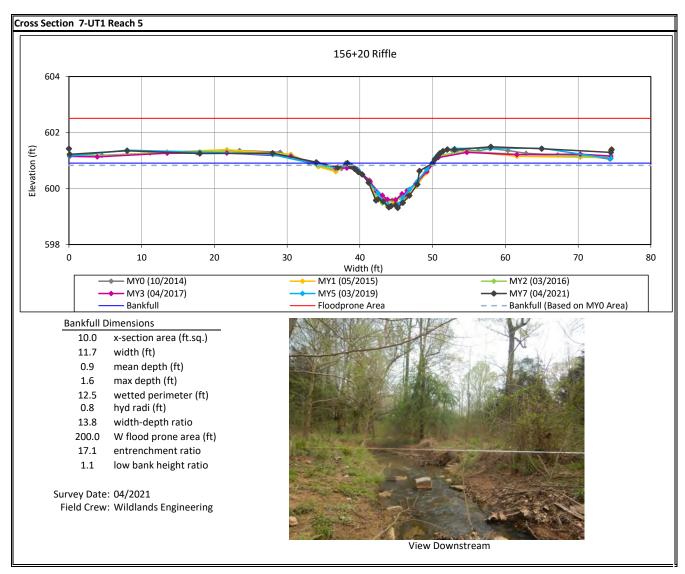

| Parameter                                        | As-Built/Baseline |              |             | MY1                                                      | N    | 1Y2                       | N   | 1Y3                        | MY5  |                | MY7  |         |  |
|--------------------------------------------------|-------------------|--------------|-------------|----------------------------------------------------------|------|---------------------------|-----|----------------------------|------|----------------|------|---------|--|
|                                                  | Min               | Max          | Min Max     |                                                          | Min  | Max                       | Min | Min Max                    |      | Min Max        |      | Min Max |  |
| Dimension and Substrate - Riffle                 |                   |              |             |                                                          |      |                           |     |                            |      |                |      |         |  |
| Bankfull Width (ft)                              | 7.1               |              | 7.0         |                                                          | (    | 6.8                       |     | 6.6                        |      | 6.8            |      | .2      |  |
| Floodprone Width (ft)                            | !                 | 50           |             | 50                                                       | 50   |                           | 50  |                            | 50   |                | 50   |         |  |
| Bankfull Mean Depth                              | (                 | ).5          | 0.5         |                                                          | (    | 0.5 0                     |     | ).5                        | 0.6  |                | 0.5  |         |  |
| Bankfull Max Depth                               | (                 | ).7          |             | 0.9                                                      | 0.9  |                           | (   | 0.8                        |      | .1             | 1.0  |         |  |
| Bankfull Cross Sectional Area (ft <sup>2</sup> ) | 3                 | 3.4          |             | 3.8                                                      |      | 3.5                       | 3   | 1.3                        | 3    | .9             | 2    | .8      |  |
| Width/Depth Ratio                                | 1                 | 4.7          |             | 12.9                                                     | 13.5 |                           | 1   | 13.5                       |      | 2.1            | 9.6  |         |  |
| Entrenchment Ratio <sup>1</sup>                  | 7                 | 7.0          |             | 7.2                                                      |      | 7.3                       | 7.5 |                            | 7    | .3             | 9.6  |         |  |
| Bank Height Ratio <sup>2</sup>                   | 1                 | 0            |             | 1.0                                                      | :    | L.O                       | 1   | 0                          | 1    | .0             | <0.1 |         |  |
| D50 (mm)                                         | 1                 | 9.7          |             | 25.0                                                     | 2    | 3.5                       | 2   | 9.3                        | 29.6 |                | 42.5 |         |  |
| Profile                                          |                   |              |             |                                                          |      |                           |     |                            |      |                |      |         |  |
| Riffle Length (ft)                               | 13.9              | 51.7         |             |                                                          |      |                           |     |                            |      |                |      |         |  |
| Riffle Slope (ft/ft)                             | 0.0146            | 0.0525       |             |                                                          |      |                           |     |                            |      |                |      |         |  |
| Pool Length (ft)                                 | 10.0              | 28.4         |             |                                                          |      |                           |     |                            |      |                |      |         |  |
| Pool Max Depth (ft)                              | 1.0               | 2.4          |             |                                                          |      |                           |     |                            |      |                |      |         |  |
| Pool Spacing (ft)                                | 25                | 66           |             |                                                          |      |                           |     |                            |      |                |      |         |  |
| Pool Volume (ft <sup>3</sup> )                   |                   |              |             |                                                          |      |                           |     |                            |      |                |      |         |  |
| Pattern                                          |                   | •            |             |                                                          |      |                           |     |                            |      |                |      | •       |  |
| Channel Beltwidth (ft)                           | 19                | 50           |             |                                                          |      |                           |     |                            |      |                |      |         |  |
| Radius of Curvature (ft)                         | 12                | 20           |             |                                                          |      |                           |     |                            |      |                |      |         |  |
| Rc:Bankfull Width (ft/ft)                        | 1.8               | 3.0          |             |                                                          |      |                           |     |                            |      |                |      |         |  |
| Meander Wave Length (ft)                         | 58                | 98           |             |                                                          |      |                           |     |                            |      |                |      |         |  |
| Meander Width Ratio                              | 2.8               | 7.5          |             |                                                          |      |                           |     |                            |      |                |      |         |  |
| Additional Reach Parameters                      |                   |              |             |                                                          |      |                           |     |                            |      |                |      |         |  |
| Rosgen Classification                            | (                 | 24           |             |                                                          |      |                           |     |                            |      |                |      |         |  |
| Channel Thalweg Length (ft)                      | 1,                | 032          |             |                                                          |      |                           |     |                            |      |                |      |         |  |
| Sinuosity (ft)                                   | 1                 | 2            |             |                                                          |      |                           |     |                            |      |                |      |         |  |
| Water Surface Slope (ft/ft)                      | 0.0207            |              |             |                                                          |      |                           |     |                            |      |                |      |         |  |
| Bankfull Slope (ft/ft)                           |                   |              |             |                                                          |      |                           |     |                            |      |                |      |         |  |
| Ri%/Ru%/P%/G%/S%                                 |                   |              |             |                                                          |      |                           |     |                            |      |                |      |         |  |
| SC%/Sa%/G%/C%/B%/Be%                             |                   |              |             |                                                          |      |                           |     |                            |      |                |      |         |  |
| d16/d35/d50/d84/d95/d100                         | SC/SC/SC/30       | 2/64.0/128.0 | SC\2.80\10. | C\2.80\10.7\35.9\75.9\180.0 SC\3.23\12.9\43.6\80.3\180.0 |      | SC\SC\1.3\26.9\64.0\180.0 |     | SC/0.5/8.0/57.6/95.4/128.0 |      | 0.1/1.85/6.7/6 |      |         |  |
| % of Reach with Eroding Banks                    | (                 | )%           |             | 0%                                                       | (    | 0%                        | 0%  |                            | 0%   |                | 0%   |         |  |

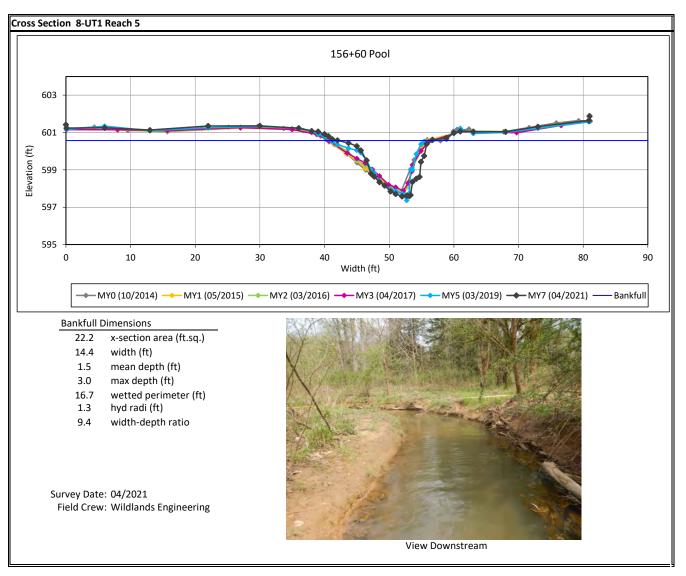

<sup>1</sup>Entrenchment Ratio is the flood prone width divided by the bankfull width.

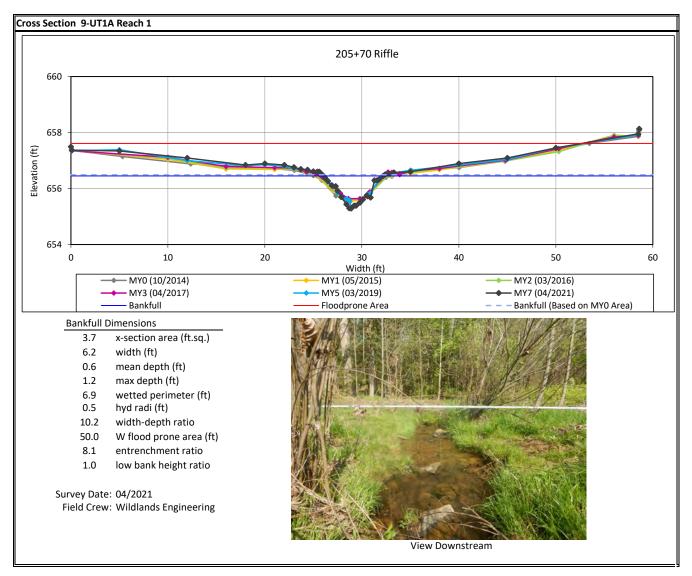

#### **Cross Section Plots**

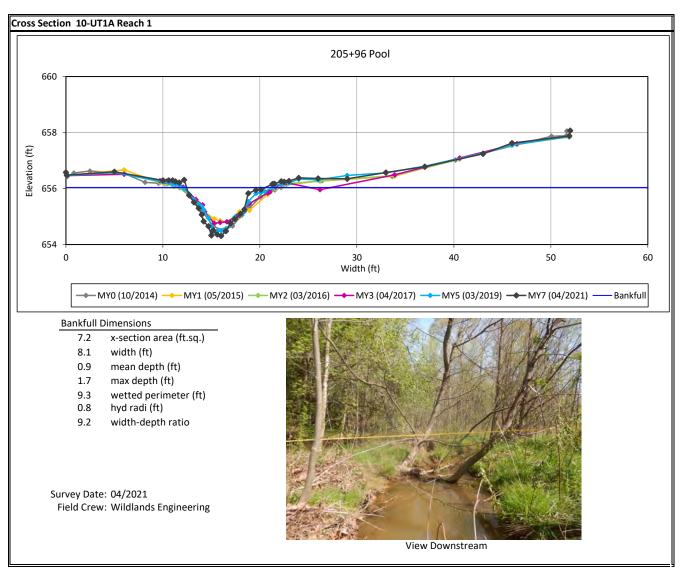

Agony Acres Mitigtion Site (DMS Project No. 95716) Monitoring Year 7 - 2021

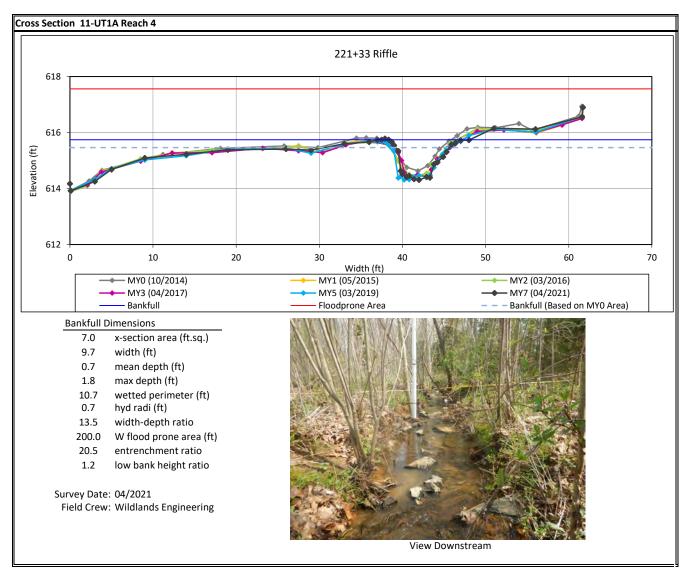


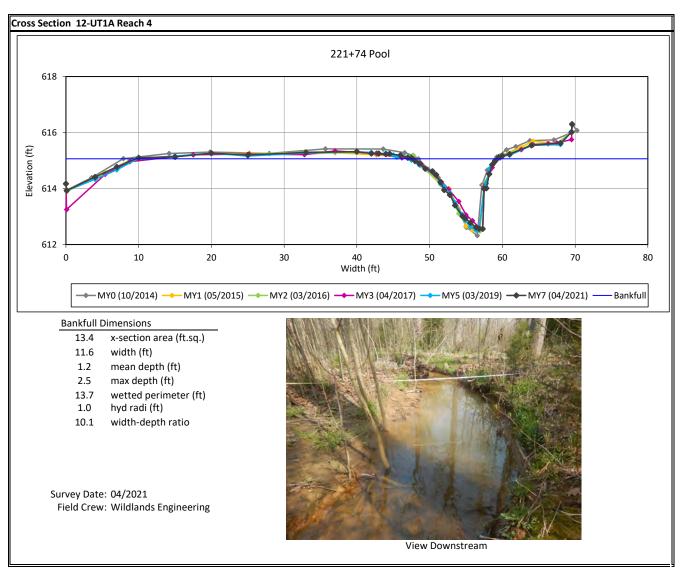



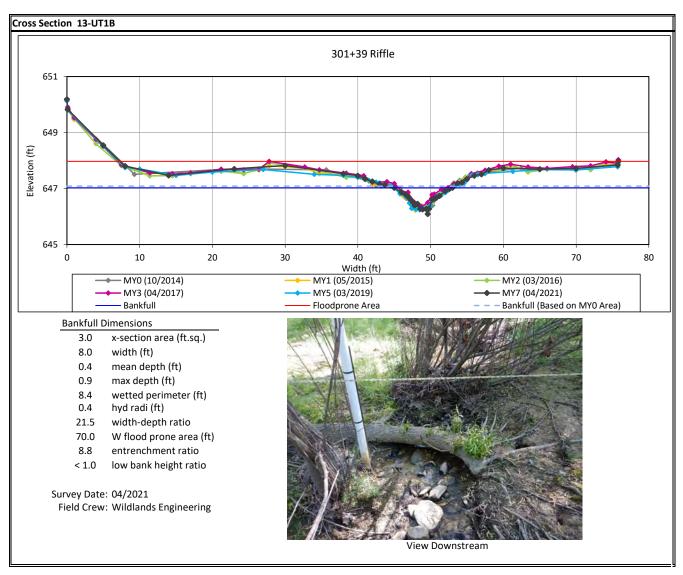



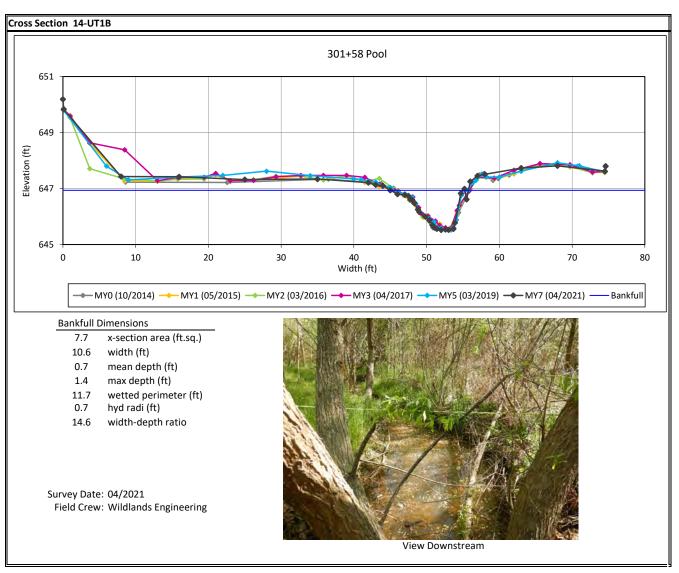



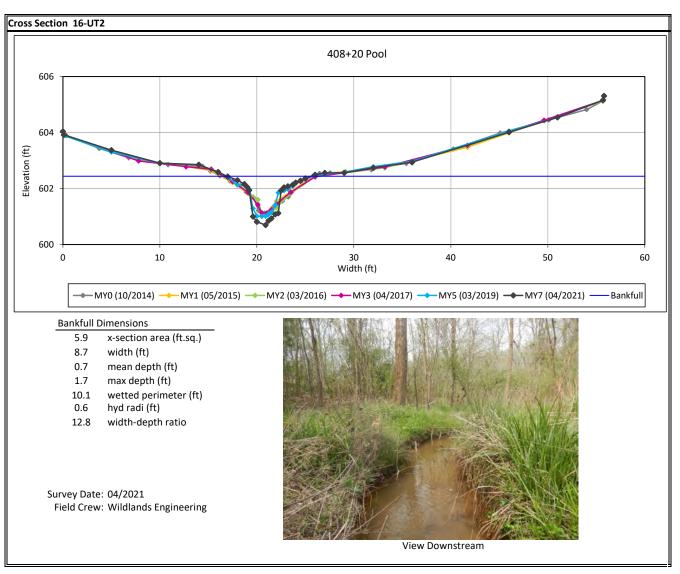



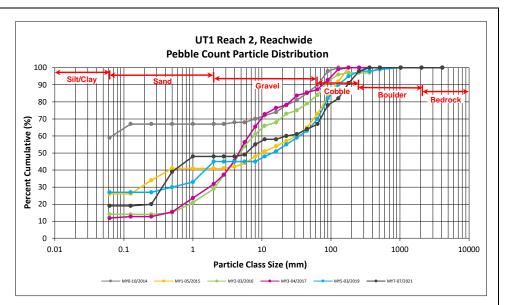


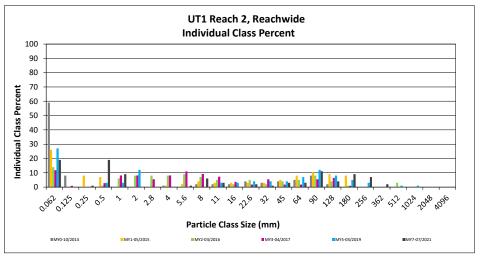









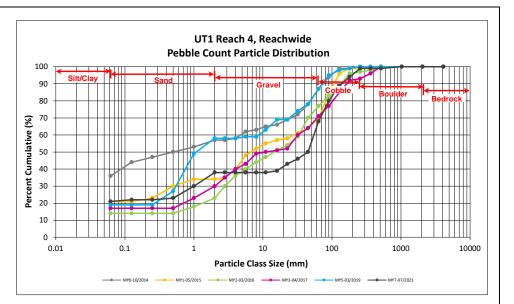



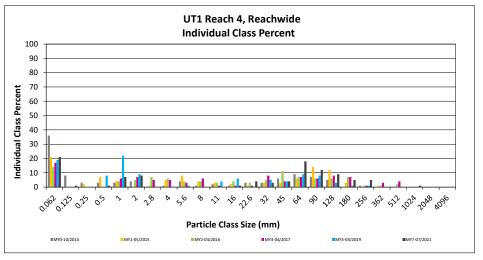




Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 7 - 2021 UT1 Reach 2, Reachwide

|                 |                  | Diame | ter (mm) | Pa     | rticle Co | unt   | Reach Summary |            |
|-----------------|------------------|-------|----------|--------|-----------|-------|---------------|------------|
| Particle Class  |                  |       |          |        |           |       | Class         | Percent    |
|                 |                  | min   | max      | Riffle | Pool      | Total | Percentage    | Cumulative |
| SILT/CLAY       | Silt/Clay        | 0.000 | 0.062    |        | 19        | 19    | 19            | 19         |
|                 | Very fine        | 0.062 | 0.125    |        |           |       |               | 19         |
|                 | Fine             | 0.125 | 0.250    |        | 1         | 1     | 1             | 20         |
| SAND            | Medium           | 0.25  | 0.50     | 5      | 14        | 19    | 19            | 39         |
| יל              | Coarse           | 0.5   | 1.0      | 4      | 5         | 9     | 9             | 48         |
|                 | Very Coarse      | 1.0   | 2.0      |        |           |       |               | 48         |
|                 | Very Fine        | 2.0   | 2.8      |        |           |       |               | 48         |
|                 | Very Fine        | 2.8   | 4.0      |        |           |       |               | 48         |
|                 | Fine             | 4.0   | 5.6      | 1      |           | 1     | 1             | 49         |
|                 | Fine             | 5.6   | 8.0      | 6      |           | 6     | 6             | 55         |
| JEL             | Medium           | 8.0   | 11.0     | 3      |           | 3     | 3             | 58         |
| GRAVEL          | Medium           | 11.0  | 16.0     |        |           |       |               | 58         |
| -               | Coarse           | 16.0  | 22.6     | 2      |           | 2     | 2             | 60         |
|                 | Coarse           | 22.6  | 32       | 1      |           | 1     | 1             | 61         |
|                 | Very Coarse      | 32    | 45       | 3      |           | 3     | 3             | 64         |
|                 | Very Coarse      | 45    | 64       | 3      |           | 3     | 3             | 67         |
|                 | Small            | 64    | 90       | 11     |           | 11    | 11            | 78         |
| COBBLE          | Small            | 90    | 128      | 4      |           | 4     | 4             | 82         |
| COBY            | Large            | 128   | 180      | 8      | 1         | 9     | 9             | 91         |
| -               | Large            | 180   | 256      | 7      |           | 7     | 7             | 98         |
|                 | Small            | 256   | 362      | 2      |           | 2     | 2             | 100        |
| RONALS.         | Small            | 362   | 512      |        |           |       |               | 100        |
| d <sup>yy</sup> | Medium           | 512   | 1024     |        |           |       |               | 100        |
|                 | Large/Very Large | 1024  | 2048     |        |           |       |               | 100        |
| BEDROCK         | Bedrock          | 2048  | >2048    |        |           |       |               | 100        |
|                 |                  |       | Total    | 60     | 40        | 100   | 100           | 100        |

| Reachwide              |           |  |  |  |  |
|------------------------|-----------|--|--|--|--|
| Channel materials (mm) |           |  |  |  |  |
| D <sub>16</sub> =      | Silt/Clay |  |  |  |  |
| D <sub>35</sub> =      | 0.43      |  |  |  |  |
| D <sub>50</sub> =      | 5.9       |  |  |  |  |
| D <sub>84</sub> =      | 138.1     |  |  |  |  |
| D <sub>95</sub> =      | 220.1     |  |  |  |  |
| D <sub>100</sub> =     | 362.0     |  |  |  |  |

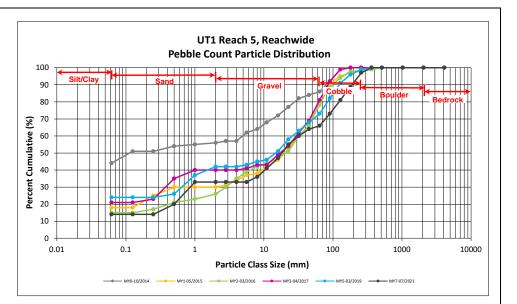


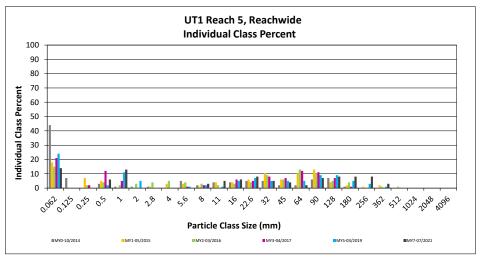




Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 7 - 2021 UT1 Reach 4, Reachwide

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Diame | ter (mm) | Ра     | rticle Co | unt   | Reach Summary |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------|----------|--------|-----------|-------|---------------|------------|
| Par                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Particle Class   |       |          |        |           |       | Class         | Percent    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | min   | max      | Riffle | Pool      | Total | Percentage    | Cumulative |
| SILT/CLAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Silt/Clay        | 0.000 | 0.062    | 2      | 19        | 21    | 21            | 21         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Very fine        | 0.062 | 0.125    | 1      |           | 1     | 1             | 22         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fine             | 0.125 | 0.250    |        |           |       |               | 22         |
| SAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Medium           | 0.25  | 0.50     | 1      |           | 1     | 1             | 23         |
| יכ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Coarse           | 0.5   | 1.0      | 2      | 5         | 7     | 7             | 30         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Very Coarse      | 1.0   | 2.0      | 4      | 4         | 8     | 8             | 38         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Very Fine        | 2.0   | 2.8      |        |           |       |               | 38         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Very Fine        | 2.8   | 4.0      |        |           |       |               | 38         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fine             | 4.0   | 5.6      |        |           |       |               | 38         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fine             | 5.6   | 8.0      |        |           |       |               | 38         |
| JEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Medium           | 8.0   | 11.0     |        |           |       |               | 38         |
| GRAVEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Medium           | 11.0  | 16.0     | 1      |           | 1     | 1             | 39         |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Coarse           | 16.0  | 22.6     | 4      |           | 4     | 4             | 43         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Coarse           | 22.6  | 32       | 1      | 2         | 3     | 3             | 46         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Very Coarse      | 32    | 45       | 4      |           | 4     | 4             | 50         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Very Coarse      | 45    | 64       | 12     | 6         | 18    | 18            | 68         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Small            | 64    | 90       | 10     | 2         | 12    | 12            | 80         |
| COBBIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Small            | 90    | 128      | 7      | 2         | 9     | 9             | 89         |
| COBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Large            | 128   | 180      | 5      |           | 5     | 5             | 94         |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Large            | 180   | 256      | 5      |           | 5     | 5             | 99         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Small            | 256   | 362      |        |           |       |               | 99         |
| J.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Small            | 362   | 512      |        |           |       |               | 99         |
| Real Provide P | Medium           | 512   | 1024     | 1      |           | 1     | 1             | 100        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Large/Very Large | 1024  | 2048     |        |           |       |               | 100        |
| BEDROCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bedrock          | 2048  | >2048    |        |           |       |               | 100        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |       | Total    | 60     | 40        | 100   | 100           | 100        |

| Reachwide              |           |  |  |  |  |
|------------------------|-----------|--|--|--|--|
| Channel materials (mm) |           |  |  |  |  |
| D <sub>16</sub> =      | Silt/Clay |  |  |  |  |
| D <sub>35</sub> =      | 1.54      |  |  |  |  |
| D <sub>50</sub> =      | 45.0      |  |  |  |  |
| D <sub>84</sub> =      | 105.3     |  |  |  |  |
| D <sub>95</sub> =      | 193.1     |  |  |  |  |
| D <sub>100</sub> =     | 1024.0    |  |  |  |  |

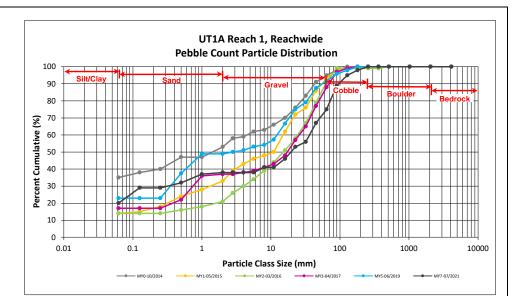


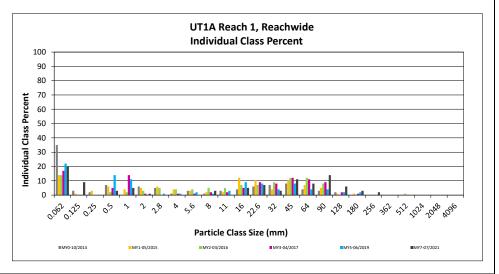




Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 7 - 2021 UT1 Reach 5, Reachwide

|           |                  | Diame | ter (mm) | Ра     | rticle Co | unt   | Reach Summary |            |
|-----------|------------------|-------|----------|--------|-----------|-------|---------------|------------|
| Par       | Particle Class   |       |          |        |           |       | Class         | Percent    |
|           |                  | min   | max      | Riffle | Pool      | Total | Percentage    | Cumulative |
| SILT/CLAY | Silt/Clay        | 0.000 | 0.062    |        | 14        | 14    | 14            | 14         |
|           | Very fine        | 0.062 | 0.125    |        |           |       |               | 14         |
|           | Fine             | 0.125 | 0.250    |        |           |       |               | 14         |
| SAND      | Medium           | 0.25  | 0.50     |        | 6         | 6     | 6             | 20         |
| יר        | Coarse           | 0.5   | 1.0      | 7      | 6         | 13    | 13            | 33         |
|           | Very Coarse      | 1.0   | 2.0      |        |           |       |               | 33         |
|           | Very Fine        | 2.0   | 2.8      |        |           |       |               | 33         |
|           | Very Fine        | 2.8   | 4.0      |        |           |       |               | 33         |
|           | Fine             | 4.0   | 5.6      |        |           |       |               | 33         |
|           | Fine             | 5.6   | 8.0      | 1      | 2         | 3     | 3             | 36         |
| JEL       | Medium           | 8.0   | 11.0     | 2      | 3         | 5     | 5             | 41         |
| GRAVEL    | Medium           | 11.0  | 16.0     | 1      | 5         | 6     | 6             | 47         |
| -         | Coarse           | 16.0  | 22.6     | 6      | 2         | 8     | 8             | 55         |
|           | Coarse           | 22.6  | 32       | 5      |           | 5     | 5             | 60         |
|           | Very Coarse      | 32    | 45       | 4      |           | 4     | 4             | 64         |
|           | Very Coarse      | 45    | 64       | 2      |           | 2     | 2             | 66         |
|           | Small            | 64    | 90       | 6      | 1         | 7     | 7             | 73         |
| COBBLE    | Small            | 90    | 128      | 7      | 1         | 8     | 8             | 81         |
| COBU      | Large            | 128   | 180      | 8      |           | 8     | 8             | 89         |
|           | Large            | 180   | 256      | 8      |           | 8     | 8             | 97         |
|           | Small            | 256   | 362      | 3      |           | 3     | 3             | 100        |
| RONDER.   | Small            | 362   | 512      |        |           |       |               | 100        |
|           | Medium           | 512   | 1024     |        |           |       |               | 100        |
|           | Large/Very Large | 1024  | 2048     |        |           |       |               | 100        |
| BEDROCK   | Bedrock          | 2048  | >2048    |        |           |       |               | 100        |
|           |                  |       | Total    | 60     | 40        | 100   | 100           | 100        |

| Reachwide              |       |  |  |  |  |
|------------------------|-------|--|--|--|--|
| Channel materials (mm) |       |  |  |  |  |
| D <sub>16</sub> =      | 0.31  |  |  |  |  |
| D <sub>35</sub> =      | 7.10  |  |  |  |  |
| D <sub>50</sub> =      | 18.2  |  |  |  |  |
| D <sub>84</sub> =      | 145.5 |  |  |  |  |
| D <sub>95</sub> =      | 234.4 |  |  |  |  |
| D <sub>100</sub> =     | 362.0 |  |  |  |  |

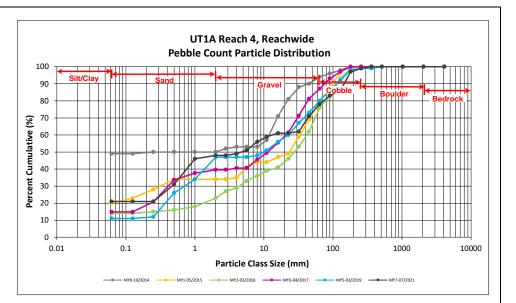


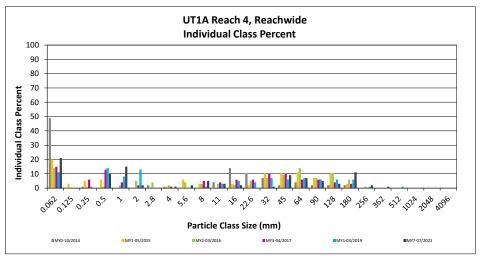




Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 7 - 2021 UT1A Reach 1, Reachwide

|                |                  | Diame | ter (mm) | Ра     | rticle Co | unt   | Reach Summary |            |
|----------------|------------------|-------|----------|--------|-----------|-------|---------------|------------|
| Particle Class |                  |       |          |        |           |       | Class         | Percent    |
|                |                  | min   | max      | Riffle | Pool      | Total | Percentage    | Cumulative |
| SILT/CLAY      | Silt/Clay        | 0.000 | 0.062    |        | 20        | 20    | 20            | 20         |
|                | Very fine        | 0.062 | 0.125    |        | 9         | 9     | 9             | 29         |
|                | Fine             | 0.125 | 0.250    |        |           |       |               | 29         |
| SAND           | Medium           | 0.25  | 0.50     |        | 3         | 3     | 3             | 32         |
| יכ             | Coarse           | 0.5   | 1.0      | 2      | 3         | 5     | 5             | 37         |
|                | Very Coarse      | 1.0   | 2.0      |        | 1         | 1     | 1             | 38         |
|                | Very Fine        | 2.0   | 2.8      |        |           |       |               | 38         |
|                | Very Fine        | 2.8   | 4.0      |        |           |       |               | 38         |
|                | Fine             | 4.0   | 5.6      |        |           |       |               | 38         |
|                | Fine             | 5.6   | 8.0      |        | 3         | 3     | 3             | 41         |
| , (EL          | Medium           | 8.0   | 11.0     |        |           |       |               | 41         |
| GRAVEL         | Medium           | 11.0  | 16.0     | 4      | 1         | 5     | 5             | 46         |
| -              | Coarse           | 16.0  | 22.6     | 7      |           | 7     | 7             | 53         |
|                | Coarse           | 22.6  | 32       | 3      |           | 3     | 3             | 56         |
|                | Very Coarse      | 32    | 45       | 11     |           | 11    | 11            | 67         |
|                | Very Coarse      | 45    | 64       | 8      |           | 8     | 8             | 75         |
|                | Small            | 64    | 90       | 14     |           | 14    | 14            | 89         |
| COBBLE         | Small            | 90    | 128      | 6      |           | 6     | 6             | 95         |
| COBU           | Large            | 128   | 180      | 3      |           | 3     | 3             | 98         |
| -              | Large            | 180   | 256      | 2      |           | 2     | 2             | 100        |
| _              | Small            | 256   | 362      |        |           |       |               | 100        |
| , see          | Small            | 362   | 512      |        |           |       |               | 100        |
| EDILET E       | Medium           | 512   | 1024     |        |           |       |               | 100        |
|                | Large/Very Large | 1024  | 2048     |        |           |       |               | 100        |
| BEDROCK        | Bedrock          | 2048  | >2048    |        |           |       |               | 100        |
|                |                  |       | Total    | 60     | 40        | 100   | 100           | 100        |

| Channel materials (mm       |   |  |  |  |
|-----------------------------|---|--|--|--|
| D C'IL/CL                   | ) |  |  |  |
| D <sub>16</sub> = Silt/Clay |   |  |  |  |
| D <sub>35</sub> = 0.76      |   |  |  |  |
| D <sub>50</sub> = 19.5      |   |  |  |  |
| D <sub>84</sub> = 79.7      |   |  |  |  |
| D <sub>95</sub> = 128.0     |   |  |  |  |
| D <sub>100</sub> = 256.0    |   |  |  |  |

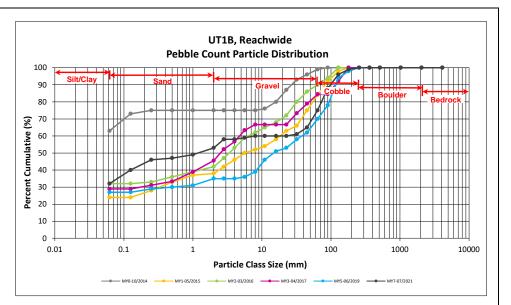


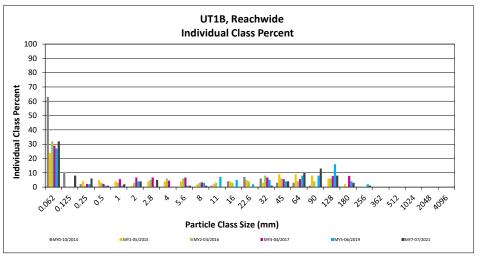




Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 7 - 2021 UT1A Reach 4, Reachwide

|                |                  | Diame | ter (mm) | Pa     | rticle Co | ount  | Reach Summary |            |
|----------------|------------------|-------|----------|--------|-----------|-------|---------------|------------|
| Particle Class |                  |       |          |        |           |       | Class         | Percent    |
|                |                  | min   | max      | Riffle | Pool      | Total | Percentage    | Cumulative |
| SILT/CLAY      | Silt/Clay        | 0.000 | 0.062    | 1      | 20        | 21    | 21            | 21         |
|                | Very fine        | 0.062 | 0.125    |        |           |       |               | 21         |
|                | Fine             | 0.125 | 0.250    |        |           |       |               | 21         |
| SAND           | Medium           | 0.25  | 0.50     | 2      | 8         | 10    | 10            | 31         |
| יכ             | Coarse           | 0.5   | 1.0      | 8      | 7         | 15    | 15            | 46         |
|                | Very Coarse      | 1.0   | 2.0      | 2      |           | 2     | 2             | 48         |
|                | Very Fine        | 2.0   | 2.8      |        |           |       |               | 48         |
|                | Very Fine        | 2.8   | 4.0      |        | 1         | 1     | 1             | 49         |
|                | Fine             | 4.0   | 5.6      | 1      | 1         | 2     | 2             | 51         |
|                | Fine             | 5.6   | 8.0      | 4      | 1         | 5     | 5             | 56         |
| JEL            | Medium           | 8.0   | 11.0     | 3      |           | 3     | 3             | 59         |
| GRAVEL         | Medium           | 11.0  | 16.0     | 2      |           | 2     | 2             | 61         |
| -              | Coarse           | 16.0  | 22.6     |        |           |       |               | 61         |
|                | Coarse           | 22.6  | 32       |        | 1         | 1     | 1             | 62         |
|                | Very Coarse      | 32    | 45       | 9      |           | 9     | 9             | 71         |
|                | Very Coarse      | 45    | 64       | 7      |           | 7     | 7             | 78         |
|                | Small            | 64    | 90       | 5      |           | 5     | 5             | 83         |
| COBBLE         | Small            | 90    | 128      | 3      |           | 3     | 3             | 86         |
| COBL           | Large            | 128   | 180      | 10     | 1         | 11    | 11            | 97         |
|                | Large            | 180   | 256      | 2      |           | 2     | 2             | 99         |
|                | Small            | 256   | 362      | 1      |           | 1     | 1             | 100        |
| RONDER.        | Small            | 362   | 512      |        |           |       |               | 100        |
| Ň              | Medium           | 512   | 1024     |        |           |       |               | 100        |
| ×              | Large/Very Large | 1024  | 2048     |        |           |       |               | 100        |
| BEDROCK        | Bedrock          | 2048  | >2048    |        |           |       |               | 100        |
|                |                  |       | Total    | 60     | 40        | 100   | 100           | 100        |

| Channel materials (mn       | Reachwide |  |  |  |  |  |
|-----------------------------|-----------|--|--|--|--|--|
|                             | n)        |  |  |  |  |  |
| D <sub>16</sub> = Silt/Clay |           |  |  |  |  |  |
| D <sub>35</sub> = 0.60      |           |  |  |  |  |  |
| D <sub>50</sub> = 4.73      |           |  |  |  |  |  |
| D <sub>84</sub> = 101.2     |           |  |  |  |  |  |
| D <sub>95</sub> = 169.2     |           |  |  |  |  |  |
| D <sub>100</sub> = 362.0    |           |  |  |  |  |  |

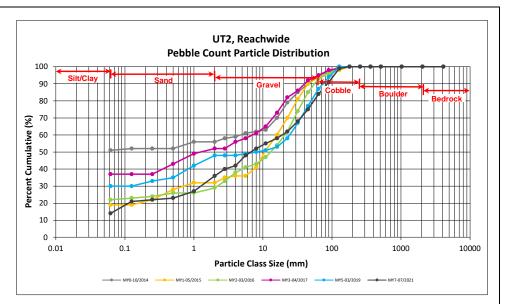


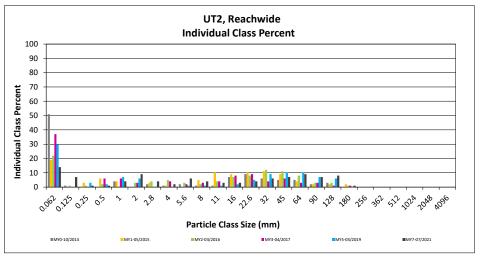




Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 7 - 2021 UT1B, Reachwide

|                                          |                  | Diame | ter (mm) | Pa     | rticle Co | unt   |            | ummary     |
|------------------------------------------|------------------|-------|----------|--------|-----------|-------|------------|------------|
| Particle Class                           |                  |       |          |        |           |       | Class      | Percent    |
|                                          |                  | min   | max      | Riffle | Pool      | Total | Percentage | Cumulative |
| SILT/CLAY                                | Silt/Clay        | 0.000 | 0.062    | 6      | 26        | 32    | 32         | 32         |
|                                          | Very fine        | 0.062 | 0.125    | 1      | 7         | 8     | 8          | 40         |
|                                          | Fine             | 0.125 | 0.250    | 1      | 5         | 6     | 6          | 46         |
| SAND                                     | Medium           | 0.25  | 0.50     | 1      |           | 1     | 1          | 47         |
| 5                                        | Coarse           | 0.5   | 1.0      | 2      |           | 2     | 2          | 49         |
|                                          | Very Coarse      | 1.0   | 2.0      | 3      | 1         | 4     | 4          | 53         |
|                                          | Very Fine        | 2.0   | 2.8      | 4      | 1         | 5     | 5          | 58         |
|                                          | Very Fine        | 2.8   | 4.0      |        |           |       |            | 58         |
|                                          | Fine             | 4.0   | 5.6      | 1      |           | 1     | 1          | 59         |
|                                          | Fine             | 5.6   | 8.0      | 1      |           | 1     | 1          | 60         |
| -181-                                    | Medium           | 8.0   | 11.0     |        |           |       |            | 60         |
| GRAVEL                                   | Medium           | 11.0  | 16.0     |        |           |       |            | 60         |
| -                                        | Coarse           | 16.0  | 22.6     |        |           |       |            | 60         |
|                                          | Coarse           | 22.6  | 32       | 1      |           | 1     | 1          | 61         |
|                                          | Very Coarse      | 32    | 45       | 4      |           | 4     | 4          | 65         |
|                                          | Very Coarse      | 45    | 64       | 10     |           | 10    | 10         | 75         |
|                                          | Small            | 64    | 90       | 13     |           | 13    | 13         | 88         |
| COBBIE                                   | Small            | 90    | 128      | 8      |           | 8     | 8          | 96         |
| COBD                                     | Large            | 128   | 180      | 3      |           | 3     | 3          | 99         |
| ÿ                                        | Large            | 180   | 256      | 1      |           | 1     | 1          | 100        |
|                                          | Small            | 256   | 362      |        |           |       |            | 100        |
| с.<br>С                                  | Small            | 362   | 512      |        |           |       |            | 100        |
| R. R | Medium           | 512   | 1024     |        |           |       |            | 100        |
|                                          | Large/Very Large | 1024  | 2048     |        |           |       |            | 100        |
| BEDROCK                                  | Bedrock          | 2048  | >2048    |        |           |       |            | 100        |
|                                          |                  |       | Total    | 60     | 40        | 100   | 100        | 100        |

| Reachwide              |           |  |  |  |  |
|------------------------|-----------|--|--|--|--|
| Channel materials (mm) |           |  |  |  |  |
| D <sub>16</sub> =      | Silt/Clay |  |  |  |  |
| D <sub>35</sub> =      | 0.08      |  |  |  |  |
| D <sub>50</sub> =      | 1.2       |  |  |  |  |
| D <sub>84</sub> =      | 81.0      |  |  |  |  |
| D <sub>95</sub> =      | 122.5     |  |  |  |  |
| D <sub>100</sub> =     | 256.0     |  |  |  |  |

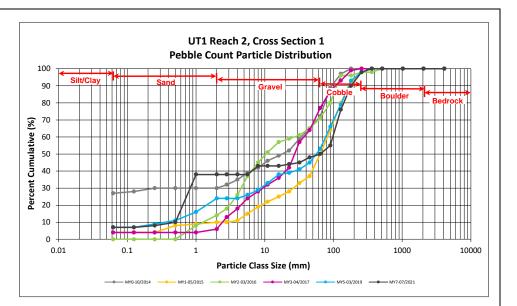


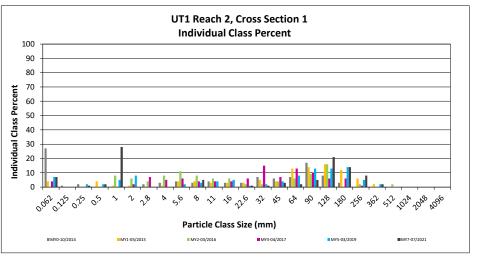




Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 7 - 2021 UT2, Reachwide

|                   |                  | Diame | ter (mm) | Pa     | rticle Co | unt   |            | ummary     |
|-------------------|------------------|-------|----------|--------|-----------|-------|------------|------------|
| Par               | ticle Class      |       |          |        |           |       | Class      | Percent    |
|                   |                  |       | max      | Riffle | Pool      | Total | Percentage | Cumulative |
| SILT/CLAY         | Silt/Clay        | 0.000 | 0.062    |        | 14        | 14    | 14         | 14         |
|                   | Very fine        | 0.062 | 0.125    |        | 7         | 7     | 7          | 21         |
|                   | Fine             | 0.125 | 0.250    |        | 1         | 1     | 1          | 22         |
| SAND              | Medium           | 0.25  | 0.50     | 1      |           | 1     | 1          | 23         |
| יל                | Coarse           | 0.5   | 1.0      | 3      | 1         | 4     | 4          | 27         |
|                   | Very Coarse      | 1.0   | 2.0      | 4      | 5         | 9     | 9          | 36         |
|                   | Very Fine        | 2.0   | 2.8      | 1      | 3         | 4     | 4          | 40         |
|                   | Very Fine        | 2.8   | 4.0      |        | 2         | 2     | 2          | 42         |
|                   | Fine             | 4.0   | 5.6      | 3      | 3         | 6     | 6          | 48         |
|                   | Fine             | 5.6   | 8.0      | 1      | 3         | 4     | 4          | 52         |
| JEL               | Medium           | 8.0   | 11.0     | 2      | 1         | 3     | 3          | 55         |
| GRAVEL            | Medium           | 11.0  | 16.0     | 3      |           | 3     | 3          | 58         |
|                   | Coarse           | 16.0  | 22.6     | 4      |           | 4     | 4          | 62         |
|                   | Coarse           | 22.6  | 32       | 6      |           | 6     | 6          | 68         |
|                   | Very Coarse      | 32    | 45       | 7      |           | 7     | 7          | 75         |
|                   | Very Coarse      | 45    | 64       | 9      |           | 9     | 9          | 84         |
|                   | Small            | 64    | 90       | 7      |           | 7     | 7          | 91         |
| COBBLE            | Small            | 90    | 128      | 8      |           | 8     | 8          | 99         |
| COBU              | Large            | 128   | 180      | 1      |           | 1     | 1          | 100        |
| -                 | Large            | 180   | 256      |        |           |       |            | 100        |
| _                 | Small            | 256   | 362      |        |           |       |            | 100        |
| _\$ <sup>\$</sup> | Small            | 362   | 512      |        |           |       |            | 100        |
| FORMER            | Medium           | 512   | 1024     |        |           |       |            | 100        |
|                   | Large/Very Large | 1024  | 2048     |        |           |       |            | 100        |
| BEDROCK           | Bedrock          | 2048  | >2048    |        |           |       |            | 100        |
|                   |                  |       | Total    | 60     | 40        | 100   | 100        | 100        |

| Reachwide          |                        |  |  |  |  |
|--------------------|------------------------|--|--|--|--|
| Chann              | Channel materials (mm) |  |  |  |  |
| D <sub>16</sub> =  | 0.08                   |  |  |  |  |
| D <sub>35</sub> =  | 1.85                   |  |  |  |  |
| D <sub>50</sub> =  | 6.7                    |  |  |  |  |
| D <sub>84</sub> =  | 64.0                   |  |  |  |  |
| D <sub>95</sub> =  | 107.3                  |  |  |  |  |
| D <sub>100</sub> = | 180.0                  |  |  |  |  |

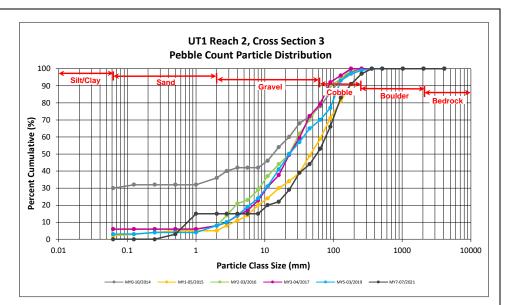


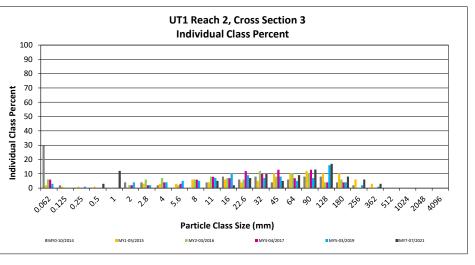




Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 7 - 2021 UT1 Reach 2, Cross Section 1

|                                          |                  | Diame | ter (mm) | Riffle 100- | Sum        | mary       |
|------------------------------------------|------------------|-------|----------|-------------|------------|------------|
| Particle Class                           |                  |       |          | Count       | Class      | Percent    |
|                                          |                  | min   | max      | count       | Percentage | Cumulative |
| SILT/CLAY                                | Silt/Clay        | 0.000 | 0.062    | 7           | 7          | 7          |
|                                          | Very fine        | 0.062 | 0.125    |             |            | 7          |
| -                                        | Fine             | 0.125 | 0.250    | 1           | 1          | 8          |
| SAND                                     | Medium           | 0.25  | 0.50     | 2           | 2          | 10         |
| 7                                        | Coarse           | 0.5   | 1.0      | 28          | 28         | 38         |
|                                          | Very Coarse      | 1.0   | 2.0      |             |            | 38         |
|                                          | Very Fine        | 2.0   | 2.8      |             |            | 38         |
|                                          | Very Fine        | 2.8   | 4.0      |             |            | 38         |
|                                          | Fine             | 4.0   | 5.6      |             |            | 38         |
|                                          | Fine             | 5.6   | 8.0      | 5           | 5          | 43         |
| JEL                                      | Medium           | 8.0   | 11.0     |             |            | 43         |
| GRAVEL                                   | Medium           | 11.0  | 16.0     |             |            | 43         |
|                                          | Coarse           | 16.0  | 22.6     | 1           | 1          | 44         |
|                                          | Coarse           | 22.6  | 32       | 1           | 1          | 45         |
|                                          | Very Coarse      | 32    | 45       | 3           | 3          | 48         |
|                                          | Very Coarse      | 45    | 64       | 2           | 2          | 50         |
|                                          | Small            | 64    | 90       | 5           | 5          | 55         |
| alt                                      | Small            | 90    | 128      | 21          | 21         | 76         |
| COBBLE                                   | Large            | 128   | 180      | 14          | 14         | 90         |
| -                                        | Large            | 180   | 256      | 8           | 8          | 98         |
|                                          | Small            | 256   | 362      | 2           | 2          | 100        |
| R. R | Small            | 362   | 512      |             |            | 100        |
| <i>w</i>                                 | Medium           | 512   | 1024     |             |            | 100        |
|                                          | Large/Very Large | 1024  | 2048     |             |            | 100        |
| BEDROCK                                  | Bedrock          | 2048  | >2048    |             |            | 100        |
|                                          |                  |       | Total    | 100         | 100        | 100        |

|                    | Cross Section 1        |  |  |  |  |
|--------------------|------------------------|--|--|--|--|
| Ch                 | Channel materials (mm) |  |  |  |  |
| D <sub>16</sub> =  | 0.58                   |  |  |  |  |
| D <sub>35</sub> =  | 0.93                   |  |  |  |  |
| D <sub>50</sub> =  | 64.0                   |  |  |  |  |
| D <sub>84</sub> =  | 155.5                  |  |  |  |  |
| D <sub>95</sub> =  | 224.3                  |  |  |  |  |
| D <sub>100</sub> = | 362.0                  |  |  |  |  |

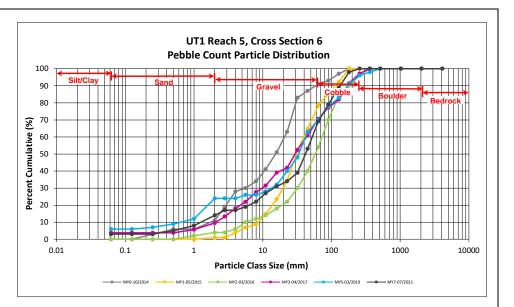


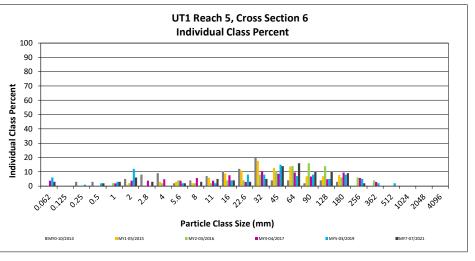




Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 7 - 2021 UT1 Reach 2, Cross Section 3

|                   |                  | Diame | ter (mm) | Riffle 100- | Sum        | mary       |
|-------------------|------------------|-------|----------|-------------|------------|------------|
| Particle Class    |                  |       |          | Count       | Class      | Percent    |
|                   |                  | min   | max      | count       | Percentage | Cumulative |
| SILT/CLAY         | Silt/Clay        | 0.000 | 0.062    |             |            | 0          |
|                   | Very fine        | 0.062 | 0.125    |             |            | 0          |
|                   | Fine             | 0.125 | 0.250    |             |            | 0          |
| SAND              | Medium           | 0.25  | 0.50     | 3           | 3          | 3          |
| יכ.               | Coarse           | 0.5   | 1.0      | 12          | 12         | 15         |
|                   | Very Coarse      | 1.0   | 2.0      |             |            | 15         |
|                   | Very Fine        | 2.0   | 2.8      |             |            | 15         |
|                   | Very Fine        | 2.8   | 4.0      |             |            | 15         |
|                   | Fine             | 4.0   | 5.6      |             |            | 15         |
|                   | Fine             | 5.6   | 8.0      |             |            | 15         |
| JEL               | Medium           | 8.0   | 11.0     | 5           | 5          | 20         |
| GRAVEL            | Medium           | 11.0  | 16.0     | 2           | 2          | 22         |
| -                 | Coarse           | 16.0  | 22.6     | 7           | 7          | 29         |
|                   | Coarse           | 22.6  | 32       | 10          | 10         | 39         |
|                   | Very Coarse      | 32    | 45       | 5           | 5          | 44         |
|                   | Very Coarse      | 45    | 64       | 9           | 9          | 53         |
|                   | Small            | 64    | 90       | 13          | 13         | 66         |
| alt               | Small            | 90    | 128      | 17          | 17         | 83         |
| COBBIE            | Large            | 128   | 180      | 8           | 8          | 91         |
| -                 | Large            | 180   | 256      | 6           | 6          | 97         |
|                   | Small            | 256   | 362      | 3           | 3          | 100        |
| REFERENCE         | Small            | 362   | 512      |             |            | 100        |
| , d <sup>yy</sup> | Medium           | 512   | 1024     |             |            | 100        |
| • •               | Large/Very Large | 1024  | 2048     |             |            | 100        |
| BEDROCK           | Bedrock          | 2048  | >2048    |             |            | 100        |
|                   |                  |       | Total    | 100         | 100        | 100        |

|                    | Cross Section 3        |  |  |  |  |
|--------------------|------------------------|--|--|--|--|
| Ch                 | Channel materials (mm) |  |  |  |  |
| D <sub>16</sub> =  | 8.53                   |  |  |  |  |
| D <sub>35</sub> =  | 27.84                  |  |  |  |  |
| D <sub>50</sub> =  | 56.9                   |  |  |  |  |
| D <sub>84</sub> =  | 133.6                  |  |  |  |  |
| D <sub>95</sub> =  | 227.6                  |  |  |  |  |
| D <sub>100</sub> = | 362.0                  |  |  |  |  |

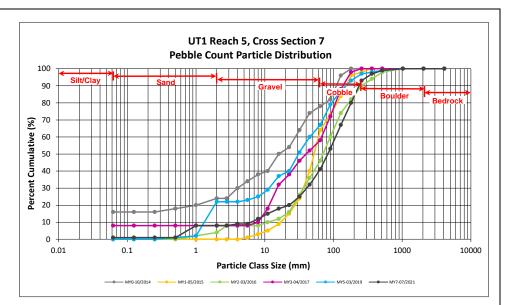


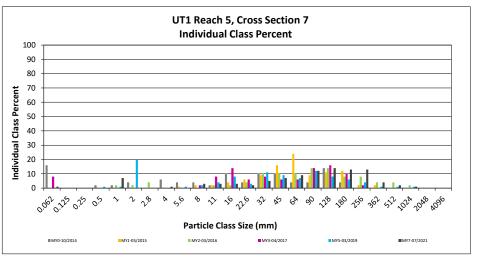




Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 7 - 2021 UT1 Reach 5, Cross Section 6

|                  |                  | Diame | ter (mm) | Riffle 100- | Sum        | mary       |
|------------------|------------------|-------|----------|-------------|------------|------------|
| Particle Class   |                  |       |          | Count       | Class      | Percent    |
|                  |                  | min   | max      |             | Percentage | Cumulative |
| SILT/CLAY        | Silt/Clay        | 0.000 | 0.062    | 3           | 3          | 3          |
|                  | Very fine        | 0.062 | 0.125    |             |            | 3          |
|                  | Fine             | 0.125 | 0.250    |             |            | 3          |
| SAND             | Medium           | 0.25  | 0.50     | 2           | 2          | 5          |
| יל               | Coarse           | 0.5   | 1.0      | 3           | 3          | 8          |
|                  | Very Coarse      | 1.0   | 2.0      | 6           | 6          | 14         |
|                  | Very Fine        | 2.0   | 2.8      | 3           | 3          | 17         |
|                  | Very Fine        | 2.8   | 4.0      |             |            | 17         |
|                  | Fine             | 4.0   | 5.6      | 2           | 2          | 19         |
|                  | Fine             | 5.6   | 8.0      | 3           | 3          | 22         |
| GRAVEL           | Medium           | 8.0   | 11.0     | 5           | 5          | 27         |
| GRA              | Medium           | 11.0  | 16.0     | 4           | 4          | 31         |
|                  | Coarse           | 16.0  | 22.6     | 3           | 3          | 34         |
|                  | Coarse           | 22.6  | 32       | 5           | 5          | 39         |
|                  | Very Coarse      | 32    | 45       | 14          | 14         | 53         |
|                  | Very Coarse      | 45    | 64       | 16          | 16         | 69         |
|                  | Small            | 64    | 90       | 10          | 10         | 79         |
| alt              | Small            | 90    | 128      | 10          | 10         | 89         |
| COBBLE           | Large            | 128   | 180      | 9           | 9          | 98         |
| -                | Large            | 180   | 256      | 2           | 2          | 100        |
|                  | Small            | 256   | 362      |             |            | 100        |
| ROUNDER          | Small            | 362   | 512      |             |            | 100        |
| .0 <sup>37</sup> | Medium           | 512   | 1024     |             |            | 100        |
| •                | Large/Very Large | 1024  | 2048     |             |            | 100        |
| BEDROCK          | Bedrock          | 2048  | >2048    |             |            | 100        |
|                  |                  |       | Total    | 100         | 100        | 100        |

|                        | Cross Section 6 |  |  |  |  |
|------------------------|-----------------|--|--|--|--|
| Channel materials (mm) |                 |  |  |  |  |
| D <sub>16</sub> =      | 2.50            |  |  |  |  |
| D <sub>35</sub> =      | 24.23           |  |  |  |  |
| D <sub>50</sub> =      | 41.8            |  |  |  |  |
| D <sub>84</sub> =      | 107.3           |  |  |  |  |
| D <sub>95</sub> =      | 160.7           |  |  |  |  |
| D <sub>100</sub> =     | 256.0           |  |  |  |  |

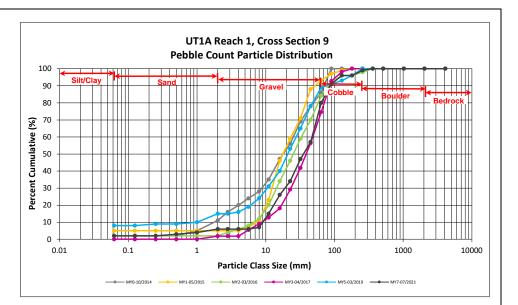


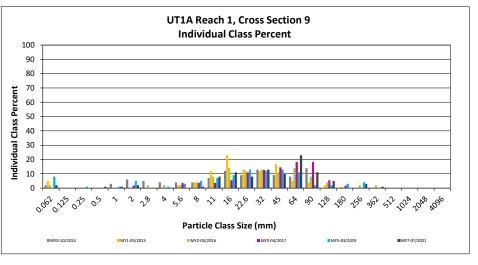




Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 7 - 2021 UT1 Reach 5, Cross Section 7

|                |                  | Diame | ter (mm) | Riffle 100- | Sum        | mary       |
|----------------|------------------|-------|----------|-------------|------------|------------|
| Particle Class |                  |       |          | Count       | Class      | Percent    |
|                |                  | min   | max      | count       | Percentage | Cumulative |
| SILT/CLAY      | Silt/Clay        | 0.000 | 0.062    | 1           | 1          | 1          |
|                | Very fine        | 0.062 | 0.125    |             |            | 1          |
|                | Fine             | 0.125 | 0.250    |             |            | 1          |
| SAND           | Medium           | 0.25  | 0.50     |             |            | 1          |
| יל             | Coarse           | 0.5   | 1.0      | 7           | 7          | 8          |
|                | Very Coarse      | 1.0   | 2.0      |             |            | 8          |
|                | Very Fine        | 2.0   | 2.8      |             |            | 8          |
|                | Very Fine        | 2.8   | 4.0      | 1           | 1          | 9          |
|                | Fine             | 4.0   | 5.6      |             |            | 9          |
|                | Fine             | 5.6   | 8.0      | 3           | 3          | 12         |
| JEL            | Medium           | 8.0   | 11.0     | 3           | 3          | 15         |
| GRAVEL         | Medium           | 11.0  | 16.0     | 3           | 3          | 18         |
|                | Coarse           | 16.0  | 22.6     | 2           | 2          | 20         |
|                | Coarse           | 22.6  | 32       | 5           | 5          | 25         |
|                | Very Coarse      | 32    | 45       | 7           | 7          | 32         |
|                | Very Coarse      | 45    | 64       | 9           | 9          | 41         |
|                | Small            | 64    | 90       | 12          | 12         | 53         |
| COBBLE         | Small            | 90    | 128      | 14          | 14         | 67         |
| COBE           | Large            | 128   | 180      | 13          | 13         | 80         |
|                | Large            | 180   | 256      | 13          | 13         | 93         |
|                | Small            | 256   | 362      | 4           | 4          | 97         |
| ROM DEF        | Small            | 362   | 512      | 2           | 2          | 99         |
| JON ST         | Medium           | 512   | 1024     | 1           | 1          | 100        |
|                | Large/Very Large | 1024  | 2048     |             |            | 100        |
| BEDROCK        | Bedrock          | 2048  | >2048    |             |            | 100        |
|                |                  |       | Total    | 100         | 100        | 100        |

|                    | Cross Section 7        |  |  |  |  |
|--------------------|------------------------|--|--|--|--|
| Ch                 | Channel materials (mm) |  |  |  |  |
| D <sub>16</sub> =  | 12.46                  |  |  |  |  |
| D <sub>35</sub> =  | 50.61                  |  |  |  |  |
| D <sub>50</sub> =  | 82.6                   |  |  |  |  |
| D <sub>84</sub> =  | 200.6                  |  |  |  |  |
| D <sub>95</sub> =  | 304.4                  |  |  |  |  |
| D <sub>100</sub> = | 1024.0                 |  |  |  |  |

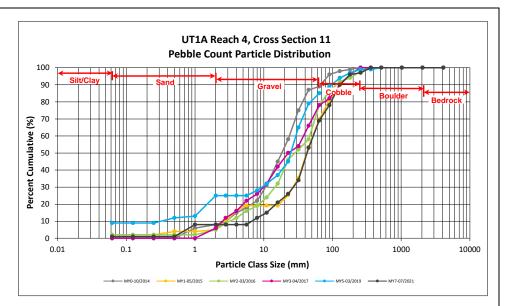


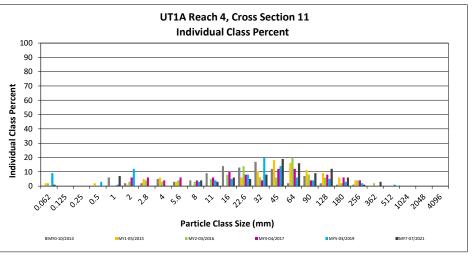




Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 7 - 2021 UT1A Reach 1, Cross Section 9

| Particle Class       |                  | Diame | ter (mm) | Riffle 100- | Summary    |            |
|----------------------|------------------|-------|----------|-------------|------------|------------|
|                      |                  |       |          | Count       | Class      | Percent    |
|                      |                  | min   | max      | count       | Percentage | Cumulative |
| SILT/CLAY            | Silt/Clay        | 0.000 | 0.062    | 2           | 2          | 2          |
|                      | Very fine        | 0.062 | 0.125    |             |            | 2          |
| -                    | Fine             | 0.125 | 0.250    |             |            | 2          |
| SAND                 | Medium           | 0.25  | 0.50     | 1           | 1          | 3          |
| 7                    | Coarse           | 0.5   | 1.0      | 1           | 1          | 4          |
|                      | Very Coarse      | 1.0   | 2.0      | 2           | 2          | 6          |
|                      | Very Fine        | 2.0   | 2.8      |             |            | 6          |
|                      | Very Fine        | 2.8   | 4.0      |             |            | 6          |
|                      | Fine             | 4.0   | 5.6      |             |            | 6          |
|                      | Fine             | 5.6   | 8.0      | 1           | 1          | 7          |
| JEL                  | Medium           | 8.0   | 11.0     | 8           | 8          | 15         |
| GRAVEL               | Medium           | 11.0  | 16.0     | 11          | 11         | 26         |
|                      | Coarse           | 16.0  | 22.6     | 8           | 8          | 34         |
|                      | Coarse           | 22.6  | 32       | 13          | 13         | 47         |
|                      | Very Coarse      | 32    | 45       | 10          | 10         | 57         |
|                      | Very Coarse      | 45    | 64       | 23          | 23         | 80         |
|                      | Small            | 64    | 90       | 11          | 11         | 91         |
| COBBLE               | Small            | 90    | 128      | 5           | 5          | 96         |
| COBE                 | Large            | 128   | 180      |             |            | 96         |
| -                    | Large            | 180   | 256      | 3           | 3          | 99         |
|                      | Small            | 256   | 362      | 1           | 1          | 100        |
| RAMA                 | Small            | 362   | 512      |             |            | 100        |
| <i>o<sup>y</sup></i> | Medium           | 512   | 1024     |             |            | 100        |
|                      | Large/Very Large | 1024  | 2048     |             |            | 100        |
| BEDROCK              | Bedrock          | 2048  | >2048    |             |            | 100        |
|                      |                  |       | Total    | 100         | 100        | 100        |

|                    | Cross Section 9        |  |  |  |  |
|--------------------|------------------------|--|--|--|--|
| Ch                 | Channel materials (mm) |  |  |  |  |
| D <sub>16</sub> =  | 11.38                  |  |  |  |  |
| D <sub>35</sub> =  | 23.21                  |  |  |  |  |
| D <sub>50</sub> =  | 35.4                   |  |  |  |  |
| D <sub>84</sub> =  | 72.4                   |  |  |  |  |
| D <sub>95</sub> =  | 119.3                  |  |  |  |  |
| D <sub>100</sub> = | 362.0                  |  |  |  |  |

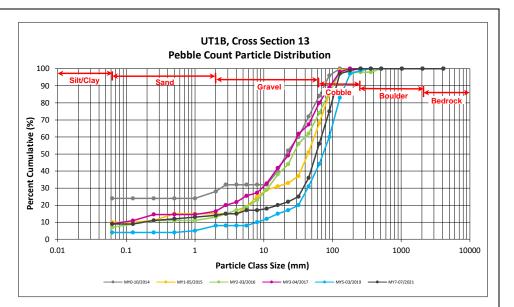


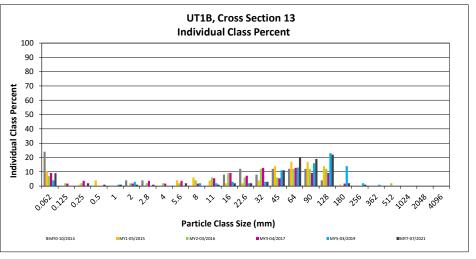




Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 7 - 2021 UT1A Reach 4, Cross Section 11

| Particle Class    |                  | Diame | ter (mm) | Riffle 100- | Summary    |            |  |
|-------------------|------------------|-------|----------|-------------|------------|------------|--|
|                   |                  |       |          | Count       | Class      | Percent    |  |
|                   |                  | min   | max      | count       | Percentage | Cumulative |  |
| SILT/CLAY         | Silt/Clay        | 0.000 | 0.062    | 1           | 1          | 1          |  |
|                   | Very fine        | 0.062 | 0.125    |             |            | 1          |  |
|                   | Fine             | 0.125 | 0.250    |             |            | 1          |  |
| SAND              | Medium           | 0.25  | 0.50     |             |            | 1          |  |
| יכ.               | Coarse           | 0.5   | 1.0      | 7           | 7          | 8          |  |
|                   | Very Coarse      | 1.0   | 2.0      |             |            | 8          |  |
|                   | Very Fine        | 2.0   | 2.8      |             |            | 8          |  |
|                   | Very Fine        | 2.8   | 4.0      |             |            | 8          |  |
|                   | Fine             | 4.0   | 5.6      |             |            | 8          |  |
|                   | Fine             | 5.6   | 8.0      | 4           | 4          | 12         |  |
| JEL               | Medium           | 8.0   | 11.0     | 3           | 3          | 15         |  |
| GRAVEL            | Medium           | 11.0  | 16.0     | 6           | 6          | 21         |  |
|                   | Coarse           | 16.0  | 22.6     | 5           | 5          | 26         |  |
|                   | Coarse           | 22.6  | 32       | 8           | 8          | 34         |  |
|                   | Very Coarse      | 32    | 45       | 19          | 19         | 53         |  |
|                   | Very Coarse      | 45    | 64       | 16          | 16         | 69         |  |
|                   | Small            | 64    | 90       | 9           | 9          | 78         |  |
| alt               | Small            | 90    | 128      | 12          | 12         | 90         |  |
| COBBIE            | Large            | 128   | 180      | 6           | 6          | 96         |  |
| -                 | Large            | 180   | 256      | 1           | 1          | 97         |  |
|                   | Small            | 256   | 362      | 3           | 3          | 100        |  |
| REFERENCE         | Small            | 362   | 512      |             |            | 100        |  |
| , d <sup>yy</sup> | Medium           | 512   | 1024     |             |            | 100        |  |
| v                 | Large/Very Large | 1024  | 2048     |             |            | 100        |  |
| BEDROCK           | Bedrock          | 2048  | >2048    |             |            | 100        |  |
|                   |                  |       | Total    | 100         | 100        | 100        |  |

|                         | Cross Section 11       |  |  |  |  |  |  |  |
|-------------------------|------------------------|--|--|--|--|--|--|--|
| Ch                      | Channel materials (mm) |  |  |  |  |  |  |  |
| D <sub>16</sub> =       | 11.71                  |  |  |  |  |  |  |  |
| D <sub>35</sub> = 32.58 |                        |  |  |  |  |  |  |  |
| D <sub>50</sub> = 42.6  |                        |  |  |  |  |  |  |  |
| D <sub>84</sub> =       | 107.3                  |  |  |  |  |  |  |  |
| D <sub>95</sub> =       | 170.1                  |  |  |  |  |  |  |  |
| D <sub>100</sub> =      | 362.0                  |  |  |  |  |  |  |  |

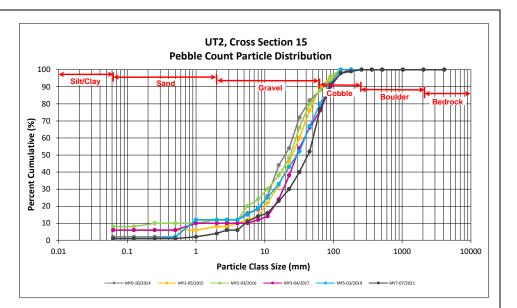


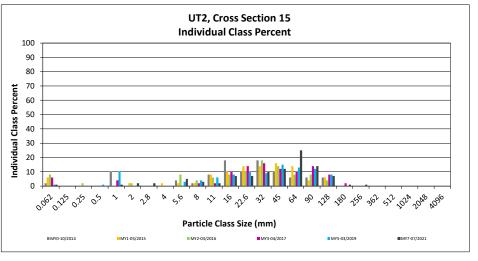




Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 7 - 2021 UT1B, Cross Section 13

| Particle Class |                  | Diame | ter (mm) | Riffle 100- | Summary    |            |  |
|----------------|------------------|-------|----------|-------------|------------|------------|--|
|                |                  |       |          | Count       | Class      | Percent    |  |
|                |                  | min   | max      | count       | Percentage | Cumulative |  |
| SILT/CLAY      | Silt/Clay        | 0.000 | 0.062    | 9           | 9          | 9          |  |
|                | Very fine        | 0.062 | 0.125    |             |            | 9          |  |
|                | Fine             | 0.125 | 0.250    | 2           | 2          | 11         |  |
| SAND           | Medium           | 0.25  | 0.50     | 1           | 1          | 12         |  |
| יכ             | Coarse           | 0.5   | 1.0      | 1           | 1          | 13         |  |
|                | Very Coarse      | 1.0   | 2.0      | 1           | 1          | 14         |  |
|                | Very Fine        | 2.0   | 2.8      | 1           | 1          | 15         |  |
|                | Very Fine        | 2.8   | 4.0      |             |            | 15         |  |
|                | Fine             | 4.0   | 5.6      | 2           | 2          | 17         |  |
|                | Fine             | 5.6   | 8.0      |             |            | 17         |  |
| JEL            | Medium           | 8.0   | 11.0     | 1           | 1          | 18         |  |
| GRAVEL         | Medium           | 11.0  | 16.0     | 2           | 2          | 20         |  |
| -              | Coarse           | 16.0  | 22.6     | 2           | 2          | 22         |  |
|                | Coarse           | 22.6  | 32       | 3           | 3          | 25         |  |
|                | Very Coarse      | 32    | 45       | 11          | 11         | 36         |  |
|                | Very Coarse      | 45    | 64       | 20          | 20         | 56         |  |
|                | Small            | 64    | 90       | 19          | 19         | 75         |  |
| COBBLE         | Small            | 90    | 128      | 22          | 22         | 97         |  |
| CO80           | Large            | 128   | 180      | 2           | 2          | 99         |  |
|                | Large            | 180   | 256      | 1           | 1          | 100        |  |
|                | Small            | 256   | 362      |             |            | 100        |  |
| , de           | Small            | 362   | 512      |             |            | 100        |  |
| ROMAR          | Medium           | 512   | 1024     |             |            | 100        |  |
|                | Large/Very Large | 1024  | 2048     |             |            | 100        |  |
| BEDROCK        | Bedrock          | 2048  | >2048    |             |            | 100        |  |
|                |                  |       | Total    | 100         | 100        | 100        |  |

| Cross Section 13   |                        |  |  |  |  |  |  |  |
|--------------------|------------------------|--|--|--|--|--|--|--|
| Ch                 | Channel materials (mm) |  |  |  |  |  |  |  |
| D <sub>16</sub> =  | 4.73                   |  |  |  |  |  |  |  |
| D <sub>35</sub> =  | 43.63                  |  |  |  |  |  |  |  |
| D <sub>50</sub> =  | 57.6                   |  |  |  |  |  |  |  |
| D <sub>84</sub> =  | 103.9                  |  |  |  |  |  |  |  |
| D <sub>95</sub> =  | 124.0                  |  |  |  |  |  |  |  |
| D <sub>100</sub> = | 256.0                  |  |  |  |  |  |  |  |




Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 7 - 2021 UT2, Cross Section 15

| Particle Class |                  | Diame | ter (mm) | Riffle 100- | Summary    |            |  |
|----------------|------------------|-------|----------|-------------|------------|------------|--|
|                |                  |       |          | Count       | Class      | Percent    |  |
|                |                  | min   | max      | count       | Percentage | Cumulative |  |
| SILT/CLAY      | Silt/Clay        | 0.000 | 0.062    | 1           | 1          | 1          |  |
|                | Very fine        | 0.062 | 0.125    |             |            | 1          |  |
|                | Fine             | 0.125 | 0.250    |             |            | 1          |  |
| SAND           | Medium           | 0.25  | 0.50     |             |            | 1          |  |
| '.<br>'        | Coarse           | 0.5   | 1.0      | 1           | 1          | 2          |  |
|                | Very Coarse      | 1.0   | 2.0      | 2           | 2          | 4          |  |
|                | Very Fine        | 2.0   | 2.8      | 2           | 2          | 6          |  |
|                | Very Fine        | 2.8   | 4.0      |             |            | 6          |  |
|                | Fine             | 4.0   | 5.6      | 5           | 5          | 11         |  |
|                | Fine             | 5.6   | 8.0      | 3           | 3          | 14         |  |
| JEL            | Medium           | 8.0   | 11.0     | 2           | 2          | 16         |  |
| GRAVEL         | Medium           | 11.0  | 16.0     | 7           | 7          | 23         |  |
|                | Coarse           | 16.0  | 22.6     | 7           | 7          | 30         |  |
|                | Coarse           | 22.6  | 32       | 10          | 10         | 40         |  |
|                | Very Coarse      | 32    | 45       | 12          | 12         | 52         |  |
|                | Very Coarse      | 45    | 64       | 25          | 25         | 77         |  |
|                | Small            | 64    | 90       | 14          | 14         | 91         |  |
| alt            | Small            | 90    | 128      | 7           | 7          | 98         |  |
| COBBLE         | Large            | 128   | 180      | 1           | 1          | 99         |  |
|                | Large            | 180   | 256      | 1           | 1          | 100        |  |
| _              | Small            | 256   | 362      |             |            | 100        |  |
| , S            | Small            | 362   | 512      |             |            | 100        |  |
| REFERENCE      | Medium           | 512   | 1024     |             |            | 100        |  |
|                | Large/Very Large | 1024  | 2048     |             |            | 100        |  |
| BEDROCK        | Bedrock          | 2048  | >2048    |             |            | 100        |  |
|                |                  |       | Total    | 100         | 100        | 100        |  |

| Cross Section 15   |                        |  |  |  |  |  |  |  |
|--------------------|------------------------|--|--|--|--|--|--|--|
| Ch                 | Channel materials (mm) |  |  |  |  |  |  |  |
| D <sub>16</sub> =  | 11.00                  |  |  |  |  |  |  |  |
| D <sub>35</sub> =  | 26.89                  |  |  |  |  |  |  |  |
| D <sub>50</sub> =  | 42.5                   |  |  |  |  |  |  |  |
| D <sub>84</sub> =  | 75.9                   |  |  |  |  |  |  |  |
| D <sub>95</sub> =  | 110.1                  |  |  |  |  |  |  |  |
| D <sub>100</sub> = | 256.0                  |  |  |  |  |  |  |  |

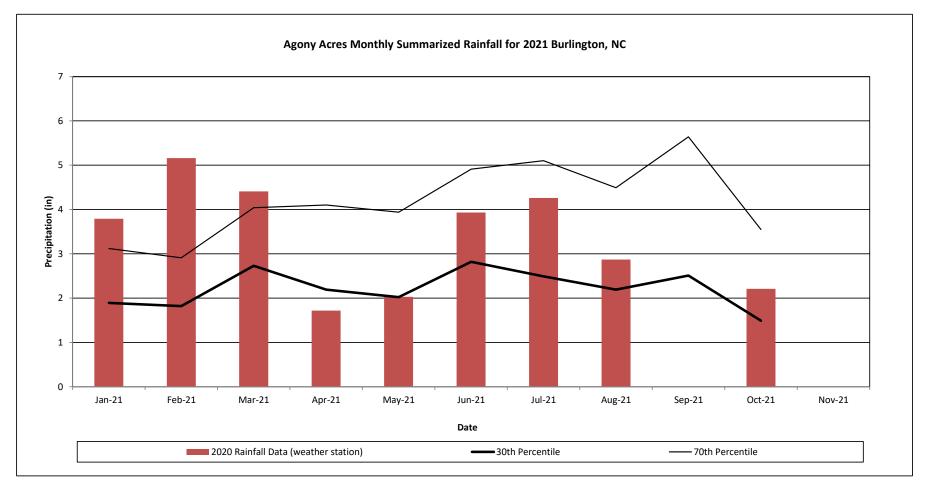




APPENDIX 5. Hydrology Summary Data and Plots

## Table 13. Verification of Bankfull EventsAgony Acres Mitigation Site (DMS Project No. 95716)Monitoring Year 7 - 2021

|       |                 | Date of Data | Date of    |                         |
|-------|-----------------|--------------|------------|-------------------------|
| Reach | Monitoring Year | Collection   | Occurrence | Method                  |
|       | MY1             | 10/5/2015    | 10/3/2015  |                         |
|       | MY2             | 3/14/2016    | 2/16/2016  |                         |
|       |                 | -, ,         | 4/24/2017  |                         |
|       | N 0/2           | 8/1/2017     | 5/23/2017  |                         |
|       | MY3             |              | 6/19/2017  |                         |
|       |                 | 10/24/2017   | 9/1/2017   |                         |
|       |                 | 2/26/2018    | 2/6/2018   |                         |
|       |                 |              | 4/27/2018  |                         |
|       |                 |              | 8/3/2018   |                         |
|       |                 | 10/9/2018    | 8/20/2018  |                         |
|       |                 |              | 9/17/2018  |                         |
|       | N 0) ( 4        |              | 10/1/2018  |                         |
|       | MY4             |              | 10/26/2018 |                         |
|       |                 |              | 11/28/2018 |                         |
|       |                 | 2/6/2010     | 12/6/2018  |                         |
|       |                 | 2/6/2019     | 12/11/2018 |                         |
|       |                 |              | 12/18/2018 |                         |
|       |                 |              | 12/23/2018 |                         |
|       |                 |              | 1/21/2019  |                         |
|       |                 | 2/6/2019     | 1/24/2019  |                         |
|       |                 |              | 2/1/2019   |                         |
|       |                 |              | 2/18/2019  | Creat Case /            |
| UT1   |                 |              | 2/23/2019  | Crest Gage/<br>Pressure |
| 011   | MY5             | 6/27/2019    | 3/1/2019   | Transducer              |
|       | C 11VI          | 0/2//2019    | 3/7/2019   | mansuucer               |
|       |                 |              | 3/21/2019  |                         |
|       |                 |              | 4/19/2019  |                         |
|       |                 |              | 11/14/2019 |                         |
|       |                 | 2/25/2020    | 12/6/2019  |                         |
|       |                 |              | 12/22/2019 |                         |
|       |                 |              | 1/22/2020  |                         |
|       |                 | 2/25/2020    | 2/6/2020   |                         |
|       |                 | 2/23/2020    | 2/15/2020  |                         |
|       |                 |              | 2/22/2020  |                         |
|       |                 |              | 5/21/2020  |                         |
|       | MY6             | 8/6/2020     | 5/24/2020  |                         |
|       | WITO            |              | 6/19/2020  |                         |
|       |                 | 9/23/2020    | 9/17/2020  |                         |
|       |                 |              | 10/30/2020 |                         |
|       |                 | 2/16/2021    | 11/12/2020 |                         |
|       |                 | 2/ 10/ 2021  | 11/30/2020 |                         |
|       |                 |              | 12/14/2020 |                         |
|       | MY7             | 2/16/2021    | 1/31/2021  |                         |
|       |                 |              | 2/15/2021  |                         |
|       | 14117           | 4/21/2021    | 3/22/2021  |                         |
|       |                 | 11/11/2021   | 8/14/2021  |                         |


#### Table 13. Verification of Bankfull Events

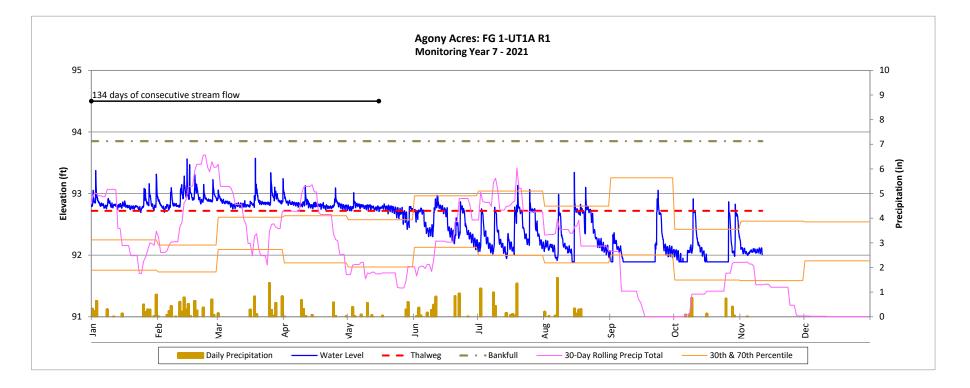
|       |                 | Date of Data | Date of    |             |
|-------|-----------------|--------------|------------|-------------|
| Reach | Monitoring Year | Collection   | Occurrence | Method      |
|       | MY1             | 10/5/2015    | 10/3/2015  |             |
|       | MY2             | 3/14/2016    | 2/16/2016  |             |
|       |                 |              | 4/24/2017  |             |
|       | MY3             | 8/1/2017     | 5/23/2017  |             |
|       |                 |              | 6/19/2017  |             |
|       |                 | 2/26/2018    | 2/4/2018   |             |
|       |                 | 10/9/2018    | 8/20/2018  |             |
|       |                 | 10/9/2018    | 9/17/2018  |             |
|       | MY4             |              | 10/11/2018 |             |
|       | 11114           |              | 10/26/2018 |             |
|       |                 | 2/6/2019     | 11/12/2018 |             |
|       |                 |              | 11/24/2018 |             |
|       |                 |              | 12/20/2018 |             |
|       |                 | 2/6/2010     | 1/21/2019  |             |
|       | MY5             | 2/6/2019     | 1/24/2019  |             |
|       |                 | 6/27/2019    | 2/18/2019  |             |
|       |                 |              | 2/23/2019  | Crest Gage/ |
| UT1A  |                 |              | 3/1/2019   | Pressure    |
|       |                 |              | 3/21/2019  | Transducer  |
|       |                 |              | 4/19/2019  |             |
|       |                 | 2/25/2020    | 10/31/2019 |             |
|       |                 | 2/25/2020    | 1/24/2020  |             |
|       |                 | 2/25/2020    | 2/6/2020   |             |
|       |                 | 8/6/2020     | 5/21/2020  |             |
|       |                 | 8/0/2020     | 6/19/2020  |             |
|       |                 | 9/23/2020    | 9/17/2020  |             |
|       | MY6             |              | 9/25/2020  |             |
|       |                 |              | 9/29/2020  |             |
|       |                 | 2/16/2021    | 10/30/2020 |             |
|       |                 | 2/10/2021    | 11/12/2020 |             |
|       |                 |              | 11/30/2020 |             |
|       |                 |              | 12/14/2020 |             |
|       |                 | 2/16/2021    | 1/24/2021  |             |
|       | MY7             |              | 2/15/2021  |             |
|       |                 | 11/11/2021   | 8/14/2021  |             |

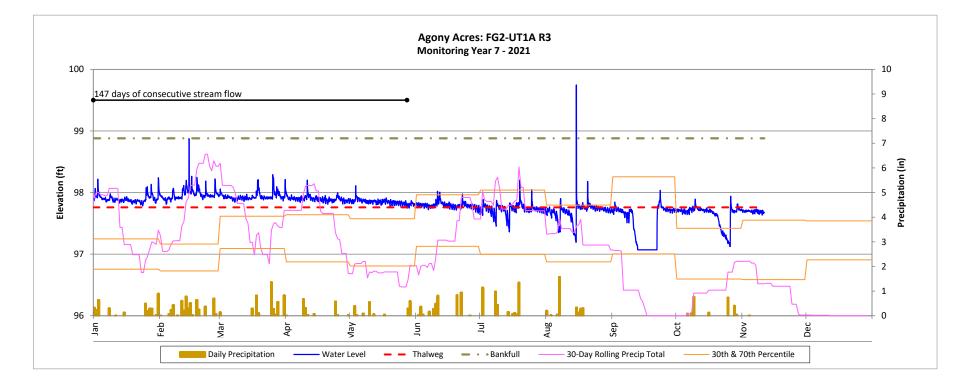
## Table 13. Verification of Bankfull EventsAgony Acres Mitigation Site (DMS Project No. 95716)Monitoring Year 7 - 2021

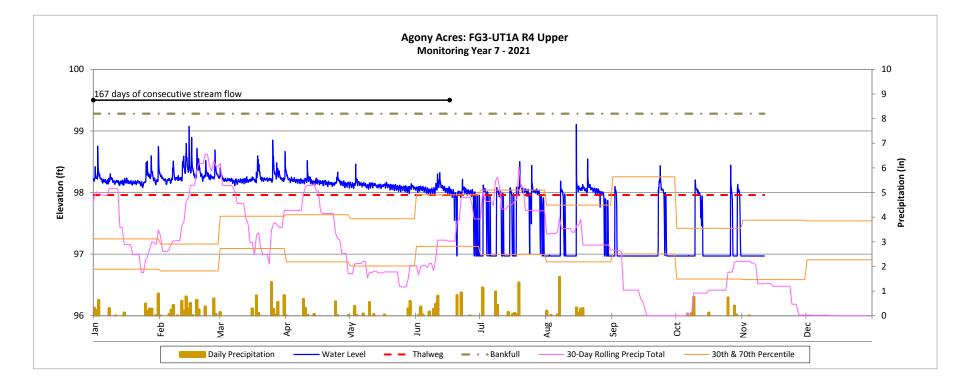
|        |                 | Date of Data                   | Date of                  |             |
|--------|-----------------|--------------------------------|--------------------------|-------------|
| Reach  | Monitoring Year | Collection                     | Occurrence               | Method      |
|        | MY1             | 10/5/2015                      | 10/3/2015                |             |
|        | MY2             | 3/14/2016                      | 2/16/2016                |             |
|        | IVITZ           | 8/30/2016                      | 5/3/2016                 |             |
|        |                 |                                | 4/24/2017                |             |
|        | MY3             | 8/1/2017                       | 5/23/2017                |             |
|        | 1113            |                                | 6/19/2017                |             |
|        |                 | 10/24/2017                     | 9/1/2017                 |             |
|        |                 |                                | 8/20/2018                |             |
|        |                 | 10/9/2018                      | 9/1/2018                 |             |
|        | MY4             |                                | 9/17/2018                |             |
|        |                 | 2/6/2019                       | 10/11/2018               |             |
|        |                 | 1-1                            | 11/13/2018               |             |
|        |                 |                                | 1/4/2019                 |             |
|        |                 | 2/6/2019                       | 1/13/2019                |             |
|        |                 |                                | 1/20/2019                |             |
| 1174.0 | N 43/5          |                                | 1/24/2019                |             |
| UT1B   | MY5             |                                | 2/18/2019                |             |
|        |                 | c /27 /22 /2                   | 2/23/2019                |             |
|        |                 | 6/27/2019                      | 3/1/2019                 |             |
|        |                 |                                | 3/21/2019                |             |
|        |                 | 2/25/2020                      | 4/19/2019                |             |
|        |                 | 2/25/2020                      | 2/6/2020                 |             |
|        |                 | 8/6/2020                       | 5/21/2020                |             |
|        |                 |                                | 6/19/2020<br>9/17/2020   |             |
|        |                 | 9/23/2020                      |                          |             |
|        | MY6             |                                | 9/25/2020<br>9/30/2020   |             |
|        |                 |                                |                          |             |
|        | MY7             | 2/16/2021                      | 11/11/2020<br>11/30/2020 |             |
|        |                 | , , , ,                        | 12/5/2020                |             |
|        |                 |                                | 12/3/2020                |             |
|        |                 | 2/10/2021                      | 2/15/2020                |             |
|        |                 | 2/16/2021                      | 8/14/2021                | Crest Gage/ |
|        | MY1             | <u>11/11/2021</u><br>10/5/2015 | 10/3/2015                | Pressure    |
|        |                 | 3/14/2016                      | 2/16/2016                | Transducer  |
|        | MY2             | 8/30/2016                      | 5/3/2016                 | Hansuucei   |
|        |                 | 8/30/2010                      | 4/24/2017                |             |
|        |                 | 8/1/2017                       | 5/23/2017                |             |
|        | MY3             | 0, 1, 201,                     | 6/19/2017                |             |
|        |                 | 2/26/2018                      | 12/11/2017               |             |
|        |                 | 2/26/2018                      | 1/7/2018                 |             |
|        |                 | _, ,                           | 4/24/2018                |             |
|        |                 | 10/9/2018                      |                          |             |
|        |                 | 10/ 5/ 2010                    | 8/3/2018                 |             |
|        |                 |                                | 9/17/2018                |             |
|        | MY4             |                                | 10/11/2018               |             |
|        |                 |                                | 10/27/2018               |             |
|        |                 | 2/6/2019                       | 11/12/2018               |             |
|        |                 |                                | 12/15/2018               |             |
| UT2    |                 |                                | 12/20/2018               |             |
| 012    |                 |                                |                          |             |
|        |                 | 2/6/2019                       | 1/21/2019                |             |
|        |                 |                                | 1/24/2019                | -           |
|        | MY5             | a /a= /                        | 2/18/2019                |             |
|        |                 | 6/27/2019                      | 2/23/2019                |             |
|        |                 | 10/20/2040                     | 6/8/2019                 |             |
|        |                 | 10/29/2019                     | 8/1/2019                 |             |
|        |                 | 2/25/2020                      | 2/6/2020                 |             |
|        |                 | 6/27/2020                      | 5/22/2020                |             |
|        | MY6             |                                | 6/19/2020                | {           |
|        |                 | 2/16/2021                      | 11/12/2020               |             |
|        |                 | 2/16/2021                      | 11/30/2020               |             |
|        |                 | 2/16/2021                      | 12/14/2020               | -           |
|        |                 | 2/16/2021<br>4/21/2021         | 2/13/2021                |             |
|        | MY7             |                                | 3/26/2021                |             |
|        |                 | 7/21/2021                      | 7/19/2021                | 4           |
|        |                 | 11/11/2021                     | 8/14/2021                |             |

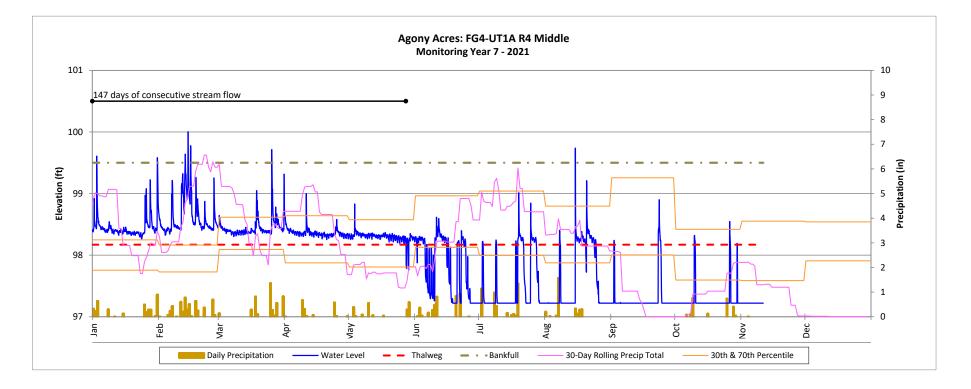
### Monthly Summarized Rainfall Data Agony Acres Mitigation Site (DMS Project No. 95716) Monitoring Year 7 - 2021

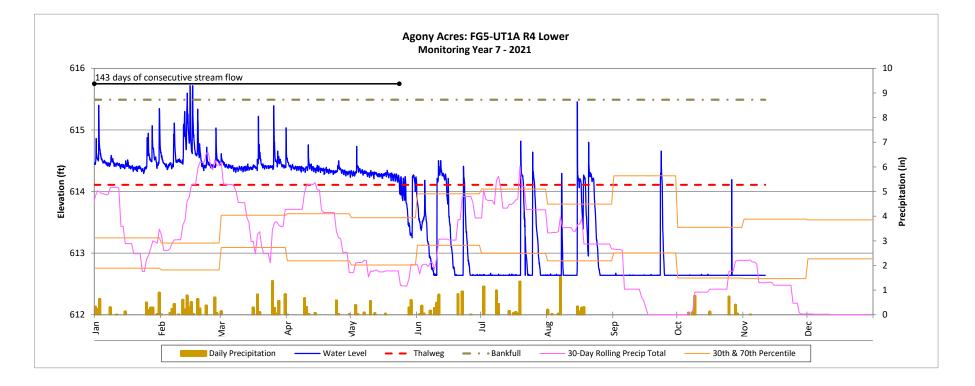



1 2021 monthly rainfall collected at Burlington Alamance Regional AP, NC.


2 30th and 70th percentile rainfall data collected from Burlington Alamance Regional AP, NC.


# Table 14. In-Stream Flow Gage Attainment SummaryAgony Acres Mitigation Site (DMS Project No. 95716)Monitoring Year 7 - 2021


|                | Sui                                                      | mmary of In-Strea    | m Flow Gage Resu             | Its for Monitoring   | Years 1 through 7    |                                     |                      |  |  |  |
|----------------|----------------------------------------------------------|----------------------|------------------------------|----------------------|----------------------|-------------------------------------|----------------------|--|--|--|
| Reach          | Max Consecutive Days/Total Days Meeting Success Criteria |                      |                              |                      |                      |                                     |                      |  |  |  |
| Keden          | Year 1 (2015)                                            | Year 2(2016)         | Year 3(2017)                 | Year 4 (2018)        | Year 5 (2019)        | Year 6 (2020)                       | Year 7 (2021)*       |  |  |  |
| UT1A R1        |                                                          |                      |                              | 148 Days/244<br>Days | 184 Days/316<br>Days | 134 Days/163<br>Days                |                      |  |  |  |
| UT1A R3        |                                                          |                      |                              | 194 Days/302<br>Days | 203 Days/354<br>Days | 147 Days/197<br>Days                |                      |  |  |  |
| UT1A R4 Upper  | UT1A flow gauges                                         | -                    | ill of MY4 for inform<br>Ny. | mational purposes    | 178 Days/257<br>Days | 194 Days/334<br>Days                | 167 Days/211<br>Days |  |  |  |
| UT1A R4 Middle |                                                          |                      |                              |                      | 147 Days/233<br>Days | 184 Days/ 311<br>Days               | 147 Days/182<br>Days |  |  |  |
| UT1A R4 Lower  |                                                          |                      |                              |                      | 145 Days/207<br>Days | 184 Days/299<br>Days                | 143 Days/159<br>Days |  |  |  |
| UT1B US        | 100 Days/333<br>Days                                     | 240 Days/331<br>Days | 364 Days/364<br>Days         | 200 Days/363<br>Days | 254 Days/333<br>Days | 365 Days/365<br>Days                | 314 Days/314<br>Days |  |  |  |
| UT1B DS        | 176 Days/363<br>Days                                     | 364 Days/364<br>Days | 364 Days/364<br>Days         | 363 Days/364<br>Days | 312 Days/361<br>Days | Gage<br>Malfunctioned<br>During MY6 | 181 Days/312<br>Days |  |  |  |


\*Data for MY7 recorded through 11/11/2021

